Preview

Vegetable crops of Russia

Advanced search

TAL-effectors occurrence among Xanthomonas campestris pv. campestris: catch me if you can

https://doi.org/10.18619/2072-9146-2024-6-11-16

Abstract

Relevance. Xanthomonas campestris pv. campestrisis a widespread bacterial pathogen that causes a black rot disease of Brassicaceae plants. It is distributed across all territories with cultivated brassica crops and has high economic significance. One of the known Xanthomonas pathogenicity factor is TAL-effectors. These proteins penetrate in plant nucleus and change expression of some host genes in order to promote infection. For some Xanthomonas species TAL-effectors are a key of bacteria success, however for Xcc their role is still remain obscure as well as TALE occurrence among Xcc belonged to different races and originated from different regions. The goal of our study was examination of TALE distribution among Xcc isolates collected in Russia.

Methods. Sample of the Xcc isolates mainly collected in Moscow region and Krasnodar krai was used for TALE search. Bacterial total DNA was isolated using CTAB method. Four primer pairs were used for TALE genes detection by amplification conservative regions.

Results. Among 50 isolates only 4 isolates possessed TALE were revealed. Low-frequency occurrence of TALE among Russian isolates can reflect Xcc population features in Moscow region and Krasnodar krai as well as genotype features of cultivated plant hosts.

About the Authors

O. L. Razhina
All-Russia Research Institute of Agricultural Biotechnology; Vavilov Institute of General Genetics
Russian Federation

Oksana L. Razhina - PhD Student, Junior Researcher.

Moscow, 127512; Moscow, 119991



M. V. Lebedeva
All-Russia Research Institute of Agricultural Biotechnology
Russian Federation

Marina V. Lebedeva - Cand. Sci. (Biology), Senior Researcher.

Moscow, 127512



K. A. Cherniaev
All-Russia Research Institute of Agricultural Biotechnology; Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Kirill А. Cherniaev - PhD Student, Junior Researcher.

Moscow, 127512; 14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072



A. N. Ignatov
People's Friendship University of Russia
Russian Federation

Aleksandr N. Ignatov - Dr. Sci. (Biology), Professor.

Moscow, 117198



F. S. Dzhalilov
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy (RSAU-MTAA)
Russian Federation

Fevzi S. Dzhalilov - Dr. Sci. (Biology), Professor, Head of the Plant Protection Department.

49, Timiryazevskaya st., Moscow, 127434



V. V. Taranov
All-Russia Research Institute of Agricultural Biotechnology
Russian Federation

Vasiliy V. Taranov - Cand. Sci. (Biology), Head of the Plant Stress Tolerance.

Moscow, 127512



References

1. Dow J.M., Daniels M.J. Pathogenicity Determinants and Global Regulation of Pathogenicity of Xanthomonas campestris pv. campestris. In: Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer Berlin Heidelberg; 1994. P. 29-41. https://doi.org/10.1007/978-3-642-78624-2_2

2. Vicente J.G., Conway J., Roberts S.J, Taylor J.D. Identification and Origin of Xanthomonas campestris pv. campestris Races and Related Pathovars. Phytopathology. 2001;91(5):492-499. https://doi.org/10.1094/phyto.2001.91.5.492

3. Kamoun S., Kamdar H.V., Tola E., Kado CI. A vascular hypersensitive responses: role of the hrpX locus. Mol. Plant-Microbe Interact.1992;(5):22-23. https://doi.org/10.1094/MPMI-5-022

4. Fargier E., Manceau C. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 2007;56(5):805-18. https://doi.org/10.1111/j.1365-3059.2007.01648.x

5. Cruz J., Tenreiro R., Cruz L. Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. Journal of Plant Pathology. 2017;99(2):403-414. https://doi.org/10.4454/JPP.V99I2.3890

6. Ha V.T.N., Dzhalilov F.S., Vinogradova S., Kyrova E., Ignatov A. Genetic diversity of black rot pathogen in Russia: Plant reaction. Zashchita Kartofelya. 2014;(2):21-25. (In Russ.) https://www.elibrary.ru/tmmlbt

7. Boch J., Bonas U. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annu Rev Phytopathol. 2010;48(1):419-36. https://doi.org/10.1146/annurev-phyto-080508-081936

8. van Schie C.C.N., Takken F.L.W. Susceptibility genes 101: How to be a good host. Annu Rev Phytopathol. 2014;52(1):551-581. https://doi.org/10.1146/annurev-phyto-102313-045854

9. Yang B., Sugio A., White F.F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA. 2006;103(27):10503-10508. https://doi.org/10.1073/pnas.0604088103

10. Antony G., Zhou J., Huang S., Li T., Liu B., White F., Yang B. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell. 2010;22(11):3864-76. Available from: https://doi.org/10.1105/tpc.110.078964

11. Yu Y., Streubel J., Balzergue S., Champion A., Boch J., Koebnik R., et al. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Mol Plant Microbe Interact. 2011;24(9):1102-1113. https://doi.org/10.1094/mpmi-11-10-0254

12. Streubel J., Pesce C., Hutin M., Koebnik R., Boch J., Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 2013;200(3):808-819. https://doi.org/10.1111/nph.12411

13. Cohn M., Bart R.S., Shybut M., Dahlbeck D., Gomez M., Morbitzer R., et al. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Mol Plant Microbe Interact. 2014;27(11):1186-1198. https://doi.org/10.1094/mpmi-06-14-0161-r

14. Cox K.L., Meng F., Wilkins K.E., Li F., Wang P., Booher N.J., et al. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat Commun. 2017;8(1): 15588 https://doi.org/10.1038/ncomms15588

15. Hu Y., Zhang J., Jia H., Sosso D., Li T., Frommer W.B., et al. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA. 2014;111(4):E521-E529. https://doi.org/10.1073/pnas.1313271111

16. Zhang J., Huguet-Tapia J.C., Hu Y., Jones J., Wang N., Liu S., et al. Homologues of CsLOB1 in citrus function as disease susceptibility genes in citrus canker. Mol Plant Pathol. 2017;18(6):798-810. https://doi.org/10.1111/mpp.12441

17. Zlobin N., Lebedeva M., Monakhova Y., Ustinova V., Taranov V. An ERF121 transcription factor from Brassicaoleracea is a target for the conserved TAL-effectors from different Xanthomonascampestris pv. campestris strains. Mol Plant Pathol. 2021;22(5):618-24. https://doi.org/10.1111/mpp.13048

18. Schwartz A.R., Morbitzer R., Lahaye T., Staskawicz B.J. TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. Proc Natl Acad Sci USA. 2017;114(5):E897-E903. https://doi.org/10.1073/pnas.1620407114

19. Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757-761. https://doi.org/10.1534/genetics.110.120717

20. Erkes A., Grove R.P., Zarkovic M., Krautwurst S., Koebnik R., Morgan R.D., et al. Assembling highly repetitive Xanthomonas TALomes using Oxford Nanopore sequencing. BMC Genomics. 2023;24(1):151. https://doi.org/10.1186/s12864-023-09228-1

21. Ferreira R.M., de Oliveira A.C.P., Moreira L.M., Belasque J.Jr., Gourbeyre E., Siguier P., et al. A TALE of transposition: Tn 3 -like transposons play a major role in the spread of pathogenicity determinants of Xanthomonas citri and other xanthomonads. MBio [Internet]. 2015;6(1). https://doi.org/10.1128/mbio.02505-14

22. Denance N., Szurek B., Doyle E.L., Lauber E., Fontaine-Bodin L., Carrere S., et al. Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire. New Phytol. 2018;219(1):391-407. https://doi.org/10.1111/nph.15148

23. Chu Z., Fu B., Yang H., Xu C., Li Z., Sanchez A., et al. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Zuchter Genet Breed Res. 2006;112(3):455-461. https://doi.org/10.1007/s00122-005-0145-6

24. Hutin M., Sabot F., Ghesquiere A., Koebnik R., Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J. 2015;84(4):694-703. https://doi.org/10.1111/tpj.13042

25. Mokryakov M.V., Abdeev I.A., Piruzyan E.S., Schaad N.W., Ignatov A.N. Diversity of effector genes in plant pathogenic bacteria of genus Xanthomonas. Microbiology. 2010;79(1):58-65. https://doi.org/10.1134/s002626171001008x

26. Kay S., Boch J., Bonas U. Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Mol Plant Microbe Interact. 2005;18(8):838-48. https://doi.org/10.1094/mpmi-18-0838

27. Lazarev A.M., Mysnik E.N., Ignatov A.N. Area and zone of harmfulness of vascular bacteriosis of cabbage. Plant Protection News. 2017;1(91):52-55. (In Russ.) https://www.elibrary.ru/wfqynd

28. Revin V.V., Liyas'kina E.V., Pokid'ko B.V., Pimenov N.V., Mardanov A.V., Ravin N.V.. Charachteristics of a new strain of Xanthomonas campestris M 28 - a xanthan producer, study of the genome, cultivation conditions and physicochemical and rheological properties of the polysaccharide. Applied Biochemistry And Microbiology. 2021;57(3):251-261. (In Russ.) https://doi.org/10.31857/s0555109921030107. https://www.elibrary.ru/gbfrvp

29. Plant Protection Research Institute (South Africa), BioNET-INTERNATIONAL., Switzerland. Direktion fur Entwicklungszusammenarbeit und Humanitare Hilfe. Introduction to practical phytobacteriology: A manual for phytobacteriology. 1999.


Review

For citations:


Razhina O.L., Lebedeva M.V., Cherniaev K.A., Ignatov A.N., Dzhalilov F.S., Taranov V.V. TAL-effectors occurrence among Xanthomonas campestris pv. campestris: catch me if you can. Vegetable crops of Russia. 2024;(6):11-16. (In Russ.) https://doi.org/10.18619/2072-9146-2024-6-11-16

Views: 236


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)