Preview

Vegetable crops of Russia

Advanced search

Peculiarities of biochemical and mineral composition of lettuce Lactuca sativa L. grown from seeds after long-term storage in the International Space Station

https://doi.org/10.18619/2072-9146-2024-2-37-42

Abstract

   Seed storage of agricultural crops in the conditions of International Space Station (ISS) is an effective method of quick plant breeding aimed to enhance the adaptability, and improve the biologically active compound accumulation and crop yield. Biochemical and mineral composition (ICP-MS) of lettuce grown in greenhouse from seeds stored for one year at the ISS was assessed. High varietal differences in lettuce tolerance to the effect of micro-gravity and radiation were evaluated using the values of yield, biometrical parameters, antioxidant status and plant mineral composition. Among the cultivars studied, i.e. Petrovich, Synthesis, Moskovsky parnikovy, Picnic, Cavalier and Bouquet, only the cvs. Retrovich, Synthesis, Moskovsky parnikovy and Picnik retained seed viability. Significant yield increase was recorded for the cv. Moskovsky parnikovy, while the cvs. Petrovich, Synthesis and Picnic demonstrated a tendency to the yield decrease. Improvement of photosynthetic pigment accumulation due to seed space storage was recorded for the cv. Moskovsky parnikovy and, particularly, the latter cultivar differed from the other cvs. due to the significantly higher proline level and lower MDA levels in leaves. Though space stress did not cause any significant decrease in antioxidant accumulation of plants, the latter demonstrated valuable changes in mineral composition. Among the 23 elements tested, V, Se. Fe and Cr showed higher concentrations compared to those in the control plants. Positive correlations between Ca, Sr, Cd, Cp, Mg, Mo and Pb were recorded (r > 0.9; p < 0.001).

About the Authors

V. A. Kharchenko
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Viktor A. Kharchenko, Cand. Sci. (Agriculture), Head of Laboratory

Laboratory of Selection and Seed Production of Green, Spice-Flavoring and Flower Crops

143072; 14, Selectsionnaya str.; Moscow region; Odintsovo district; VNIISSOK



N. А. Golubkina
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Nadezhda А. Golubkina, Dr. Sci. (Agriculture), Head Researcher Department

Researcher of Laboratory-Analytical Department

143072; 14, Selectsionnaya str.; Moscow region; Odintsovo district; VNIISSOK



L. N. Skrypnik
Immanuel Kant Baltic Federal University
Russian Federation

Liubov N. Skrypnik, Cand. Sci. (Biology), Assistant Professor

Institute of Living Systems

236040; Kaliningrad



O. C. Murariu
“Ion Ionescu de la Brad” Iasi University of Life Sciences
Romania

Otilia Cristina Murariu, PhD, Assistant Professor

Department of food technology

700440; Iasi



G. Caruso
University of Naples Federico II
Italy

Gianluca Caruso, Dr. Sci. (Agriculture), Professor of vegetable crops

Department of Agricultural Sciences

80055; Naples



References

1. Musgrave M.E. Seeds in space. Seed Sci. Res. 2002;(12):1–16.

2. Xianfang W., Long Z., Weixu D., Chunhua L. Study of space mutation breeding in China. Appl. Life Sci. 2004;(18):241–246.

3. He X., Liu M., Lu J., Xue H., Pan Y. Space mutation breeding: a brief Introduction of screening New floricultural, vegetable and medicinal varieties from earth-grown plants returned from China’s satellites and spaceships. In Teixeira da Silva JA (ed.), Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. 2006. 1st Edn. Isleworth: Global Science Books, pp. 266–271.

4. Liu L.X., Guo H.J., Zhao L., Gu J., Zhao S. Advances in crop improvement by space mutagenesis in China. ICSC. 2008;(4):274.

5. Prasad B., Richter P., Vadakedath N., Haag F.W.M., Strauch S.M., Mancinelli R., Schwarzwälder A., Etcheparre E., Gaume N., Lebert M. How the space environment influences organisms: an astrobiological perspective and review. Int. J. Astrobiol. 2021;(20):159–177. doi: 10.1017/S1473550421000057.

6. Ferl R.J., Koh J., Denison F., Paul A.L. Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiol. 2015;(15):32-56. doi: 10.1089/ast.2014.1210.

7. Caplin N.M. Developmental, morphological and physiological effects of chronic low doses of ionizing radiation on plants on Earth and in space. Ph. Dr Thesis, University of the West of England, Bristol, England, 2019.

8. Deyong Z., Jie C., Yishu Y., Meng Z., Shan S., Xin G. Effects of space flight on expression of key proteins in rice leaves. Rice Sci. 2020;(27):423–433. doi: 10.1016/j.rsci.2019.12.011.

9. Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7(11):1456-66. doi: 10.4161/psb.21949.

10. Kharchenko V., Golubkina N., Skrypnik L., Murariu O.C., Vecchietti L., Caruso G. The Effect of One-year Seed Spaceflight Storage on Biochemical and Mineral Characteristics of Mature Leafy Vegetables Belonging to Brassicaceae, Apiaceae and Asteraceae Families Horticuturae. 2023;(9):535. doi: 10.3390/ horticulturae9050535.

11. Djoss H., Golubkina N., Kondratyeva I., Koshevarov A., Shkaplerov A., Zavarikina T., Nechitailo G., Caruso G. Effect of spaceflight on tomato seed quality and biochemical characteristics of mature plants Horticulturae. 2021;7(5):89. doi: 10.3390/horticulturae7050089.

12. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods of Enzymology. 1987;(148):350–382.

13. Golubkina N.A., Kekina H.G., Molchanova A.V., Antoshkina M.S., Nadezhkin S.M., Soldatenko A.V. Plant antioxidants and methods of their determination. Moscow 2020, Infra-M. (In Russ.)

14. Ouertani R.N., Abid G., Karmous C., Chikha M.B., Boudaya O., Mahmoudi H., Mejri S., Jansen K., Ghorbel A. Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AoB Plants. 2021;13(4):plab034. doi: 10.1093/aobpla/plab034.

15. Heath R.L., Parker L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;(125):189–198. doi: 10.1016/0003-9861(68)90654-1.

16. Levine H.G. The Influence of Microgravity on Plants. NASA ISS Research Academy and Pre Application Meeting, 3- 5<sup>th</sup> August 2010. At url: https://www.nasa.gov/pdf/478076main.

17. Chandler J.O., Haas F.B., Khan S., Bowden L., Ignatz M., Enfissi E.M.A., Gawthrop F., Griffiths A., Fraser P.D., Rensing S.A., Leubner-Metzger G. Rocket science: the effect of spaceflight on germination physiology, ageing, and transcriptome of Eruca sativa seeds. Life. 2020;10(4):49. doi: 10.3390/life10040049.

18. Maoka T. Carotenoids as natural functional pigments. J. Nat. Med. 2020;74(1):1-16. doi: 10.1007/s11418-019-01364-x.

19. Jia C.-Z., Wang J.-J., Chen D.-L., Hu X.-W. Seed Germination and Seed Bank Dynamics of Eruca sativa (Brassicaceae): A Weed on the Northeastern Edge of Tibetan Plateau. Front. Plant Sci. 2022;(13):820925. doi: 10.3389/fpls.2022.820925.

20. Hashioto H., Uragami C., Cogdell R.J. Carotenoids and photosynthesis, in Carotenoids in Nature (Cham, Switzerland: Springer). 2016. P. 111–139.

21. Khan Z., Thounaojam T.C., Chowdhury D. The role of selenium and nano selenium on physiological responses in plant : a review. Plant Growth Regul. 2023;(100):409–433. doi: 10.1007/s10725-023-00988-0.

22. Golubkina N.A., Papazyan T.T. Selenium in Nutrition. Plants, animals, human beings. Moscow, Pechatny gorod, 2006. (In Russ.)

23. Hanus-Fajerska E., Wiszniewska A., Kaminska I. A dual role of vanadium in environmental systems—beneficial and detrimental effects on terrestrial plants and humans. Plants. 2021;(10):1110. doi: 10.3390/plants10061110.

24. López-Bucio J.S., Ravelo-Ortega G., López-Bucio J. Chromium in plant growth and development: Toxicity, tolerance and hormesis. Environ. Pollut. 2022;(312):120084. doi: 10.1016/j.envpol.2022.120084.

25. Kabata-Pendias A. Trace Elements in Soils and Plants. 4<sup>th</sup> ed. 2011, CRC Press: Boca Raton, FL, USA.

26. Zhang S., Li Q., Nazir M.M., Ali S., Ouyang Y., Ye S., Zeng F. Calcium Plays a Double-Edged Role in Modulating Cadmium Uptake and Translocation in Rice. Int J Mol Sci. 2020;29,21(21):8058. doi: 10.3390/ijms21218058.

27. Aslam M., Verma D.K., Dhakerya R., Rais S., Alam M., Ansari F.A. Bioindicator: A Comparative Study on Uptake and Accumulation of Heavy Metals in Some Plant`s Leaves of M.G. Road, Agra City, India Res. J. Environ. Earth Sci. 2012;б4(12):1060-1070.

28. Han Z., Wei X., Wan D., He W., Wang X., Xiong Y. Effect of Molybdenum on Plant Physiology and Cadmium Uptake and Translocation in Rape (Brassica napus L.) under Different Levels of Cadmium Stress. Int. J. Environ. Res. Public Health 2020;(17):2355. doi: 10.3390/ijerph17072355.


Review

For citations:


Kharchenko V.A., Golubkina N.А., Skrypnik L.N., Murariu O.C., Caruso G. Peculiarities of biochemical and mineral composition of lettuce Lactuca sativa L. grown from seeds after long-term storage in the International Space Station. Vegetable crops of Russia. 2024;(2):37-42. (In Russ.) https://doi.org/10.18619/2072-9146-2024-2-37-42

Views: 360


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)