Preview

Овощи России

Расширенный поиск

Антиоксидантная активность пигментированного картофеля (Solanum tuberosum L.), содержание антоцианов, их биосинтез и физиологическая роль

https://doi.org/10.18619/2072-9146-2019-6-84-90

Полный текст:

Аннотация

Актуальность. Сорта картофеля с красной и фиолетовой мякотью представляют высокую диетическую ценность, так как являются источниками полифенольных соединений с антиоксидантной активностью, прежде всего антоцианов. Установлено, что содержание антоцианов у картофеля коррелирует с суммарным содержанием растворимых фенольных соединений и антиоксидантной активностью. Эти показатели значительно выше у картофеля с пигментированной кожурой и мякотью. При холодном хранении такого картофеля содержание фенольных соединений, в частности антоцианов, увеличивается. Пигментированный картофель также является более предпочтительным для потребления в пищу и промышленной переработки, так как в ходе этих процессов сохраняет антиоксидантные свойства и улучшает качество конечных продуктов. Селекция картофеля по признаку окраски мякоти и биотехнологические подходы регуляции накопления антоцианов базируются на понимании молекулярно-генетических процессов их биосинтеза. Биосинтез антоцианов включен в фенилпропаноидный метаболический путь и находится под контролем комплекса MBW, который включает в себя транскрипционные факторы MYB, bHLH и WD40. У картофеля был идентифицирован ряд генов, принадлежащих комплексу MYB. Ключевая роль в изменчивости по признаку пигментации в данный момент отводится гену StAN1. Имеются обширные данные о защитной роли антоцианов в ответ на различные типы стресса у картофеля.

Об авторах

О. Б. Поливанова
ФГБНУ "Всероссийский научно-исследовательский институт картофельного хозяйства имени А.Г. Лорха"; ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева
Россия

140051, Московская область, Люберецкий район, п. Красково, ул. Лорха, д. 23, литера «В»;

127550, г. Москва, ул. Тимирязевская, д. 49



Е. М. Гинс
ФГБНУ "Всероссийский научно-исследовательский институт картофельного хозяйства имени А.Г. Лорха"; ФГАОУ ВО «Российский университет дружбы народов»
Россия

140051, Московская область, Люберецкий район, п. Красково, ул. Лорха, д. 23, литера «В»;

117198, г. Москва, ул. Миклухо-Маклая, д. 6



Список литературы

1. Lopez-Cobo A., Go ́ mez-Caravaca A.M., Cerretani L., Segura-Carretero A., Ferna ́ ndez- ́ Gutierrez A. Distribution of phenolic compounds and other polar compounds in the tuber of ́ Solanum tuberosum L. by HPLC-DAD-q-TOF and study of their antioxidant activity J. Food Compos. Anal. 2014;36:1–11. https://doi.org/10.1016/j.jfca.2014.04.009.

2. Ezekiel R., Singh N., Sharma S., Kaur A. Beneficial phytochemicals in potato - a review. Food Res. Int. 2013;50:487–496. https://doi.org/10.1016/j.foodres.2011.04.025.

3. Kita A., Bakowska-Barczak A., Hamouz K., Ku ̨ łakowska K., Lisinska G. The effect of fry- ́ ing on anthocyanin stability and antioxidant activity of crisps from red- and purple-fleshed potatoes (Solanum tuberosum L.) Journal of Food Composition and Analysis. 2013;32(2):169-175. https://doi.org/10.1016/j.jfca.2013.09.006.

4. Vinson J.A. Demkosky C.A., Navarre D.A., Smyda M.A. High-antioxidant potatoes: Acute in vivo antioxidant source and hypotensive agent in humans after supplementation to hypertensive subjects. J. Agric. Food Chem. 2012;60(27):6749-6754. https://doi.org/10.1021/jf2045262.

5. Singh N. Rajini P.S. Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage. Chemico-Biological Interaction. 2008;173:97–104. https://doi.org/10.1016/j.cbi.2008.03.008.

6. Choi M.K., Park S.J., Eom S.H., Kang M.H. Anti-diabetic and hypolipidemic effects of purple-fleshed potato in streptozotocin-induced diabetic rats. Food Sci. Biotechnol. 2013;22:1–6. https://doi.org/10.1007/s10068-013-0231-5.

7. Thompson M.D., Thompson H.J., McGinley J.N., Neil E.S., Rush D.K., Holm D.G., Stushnoff C. Functional food characteristics of potato cultivars (Solanum tuberosum L.): Photochemical composition and inhibition of 1-methyl-1- nitrosourea induced breast cancer in rats. Journal of Food Composition and Analysis. 2009;22:571–576. https://doi.org/10.3945/jn.110.128074.

8. Kaspar K.L., Park J.S., Brown C.R., Mathison B.D., Navarre D.A., Chew B.P. Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J. Nutr. 2011;141:108–111. https://doi.org/10.3945/jn.110.128074.

9. Hamouz, K. Lachman J., Hejtmánková K., Pazderů K., Čнžek M., Dvořák P. Effect of natural and growing conditions on the content of phenolics in potatoes with different flesh colour. Plant, Soil and Environment. 2010;56:368–374. https://doi.org/10.1016/j.foodchem.2016.01.120.

10. Tian J. Chen J., Ye X., Chen S. Health benefits of the potato affected by domestic cooking: a review. Food Chemistry. 2016;202:165–175. https://doi.org/10.1016/j.foodchem.2016.01.120

11. Burmeister A. Bondiek S., Apel L., Kьhne C., Hillebrand S., Fleischmann P. Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. J. Food Compos. Anal. 2011;24(6):865-872. https://doi.org/10.1016/j.jfca.2011.03.006.

12. Andre C.M., Ghislain M., Bertin P., Oufir M., Herrera Mdel R, Hoffmann L., Hausman J.F., Larondelle Y., Evers D. Andean potato cultivars (Solanum tuberosum L.) as source of antioxidant and mineral micronutrients. Journal of Agricultural and Food Chemistry. 2007;55:366–378. https://doi.org/10.1021/jf062740i.

13. Evers D., Deußer H. Potato Antioxidant Compounds: Impact of Cultivation Methods and Relevance for Diet and Health. In: Nutrition, Well-Being and Health. Bouayed J., In Tech; 2012. 95-118. https://doi.org/10.5772/31077.

14. Padmanabhan P., Sullivan J.A., Paliyath G. Potatoes and Related Crops. In: The Encyclopedia of Food and Health, Edition: Vol 4, 2016, Chapter: 556, Publisher: Oxford: Academic Press., Editors: Benjamin Caballero, Paul M Finglas, Fidel Toldra; 2016. 446-45 https://doi.org/10.1016/B978-0-12-384947-2.00556-0.

15. Chun O.K., Kim D.O., Smith N., Schroeder D., Taek J., Chang H., Lee Y. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. Journal of the Science of Food and Agriculture. 2005;85:1715–1724. https://doi.org/10.1002/jsfa.2176.

16. Lewis C.E., Walker J., Lancaster J.E., Sutton K.H. Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: Coloured cultivars of Solanum tuberosum L. Journal of the Science of Food and Agriculture. 1998;77:45–57. https://doi.org/10.1002/(SICI)1097-0010(199805)77:13.0.CO;2-S.

17. Brown C.R. Antioxidants in potato. American Journal of Potato Research. 2005;62:163–172. https://doi.org/10.1007/BF02853654.

18. Tudela J.A. Cantos E., Espin J.C., Tomás-Barberán F.A., Gil M.I. Induction of antioxidant flavonol biosynthesis in fresh-cut potatoes. Effect of domestic cooking. Journal of Agricultural and Food Chemistry. 2002;50:5925–5931. https://doi.org/10.1021/jf020330y.

19. Pietta P.G. Flavonoids as antioxidants. Journal of Natural Products. 2000;63:1035–1042. https://doi.org/10.1021/np9904509.

20. Chu Y.H. Chang C.L., Hsu H.F. Flavonoid content of several vegetables and their antioxidant activity. Journal of the Science of Food and Agriculture. 2000;80:561–566. https://doi.org/10.1002/(SICI)1097-0010(200004)80:53.0.CO;2-%23.

21. Brown C.R., Durst R.W., Wrolstad R., De Jong W. Variability of phytonutrient content of potato in relation to growing location and cooking method. Potato Research. 2008;51:259–270. https://doi.org/10.1007/s11540-008-9115-0.

22. Jansen G., Flamme W. Coloured potatoes (Solanum tuberosum L.) – anthocyanin content and tuber quality. Genetic Resources and Crop Evolution. 2006;53:1321–1331. https://doi.org/10.1007/s10722-005-3880-2.

23. Lachman J., Hamouz K. Red and purple coloured potatoes as a significant antioxidant source in human nutrition – a review. Plant Soil Environ.2005;51:477–482. https://doi.org/10.17221/3620-PSE.

24. Fossen T.R., Andersen O.M. Anthocyanins from tubers and shoots of the purple potato Solanum tuberosum. Journal of Horticultural Science and Biotechnology. 2000;75:360–363. https://doi.org/10.1080/14620316.2000.11511251.

25. Lachman J., Hamouz K., Orsák M., Pivec V., Hejtmánková K., PazderůK., Dvorá̌ k P., Čepl J. Impact of selected factors - cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem. 2012;133:1107–1116. https://doi.org/10.1016/j.foodchem.2011.07.077.

26. Lewis C.E., Walker J.R.L., Lancaster J.E. Changes in anthocyanin, flavonoid and phenolic acid concentrations during development and storage of coloured potato (Solanum tuberosum L.) tubers. Journal of the Science of Food and Agriculture. 1999;79(2):311–316. https://doi.org/10.1002/(SICI)1097-0010(199902)79:23.0.CO;2-Q.

27. Husing B. Herrmann M.E., Hillebrand S., Winterhalter P., Schliephake U., Trautz D. ̈ Cultivation and analysis of anthocyanin containing types of potatoes in organic and integrated farming systems regarding cultivability and additional health. 16th IFOAM Organic World Congress, Modena, Italy, June 16-20, 2008.

28. Madiwale G.P., Reddivari L., Holm D.G., Vanamala J. Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptotic properties of colored-flesh potatoes against human colon cancer cell lines. J. Agric. Food Chem. 2011;59:8155–8166. https://doi.org/10.1021/jf201073g.

29. Yamdeu Galani J.H., Mankad P.M., Shah A.K., Patel N.J.,. Acharya R.R, Talati J.G. Effect of storage temperature on vitamin c, total phenolics, uplc phenolic acid profile and antioxidant capacity of eleven potato (Solanum tuberosum) varieties. Horticultural Plant Journal. 2017;3(2):73–89. https://doi.org/10.1016/j.hpj.2017.07.004.

30. Teng S., Keurentjes J., Bentsink L., Koornneef M., Smeekens S. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 2005;39(4):1840-1852. https://doi.org/10.1104/pp.105.066688.

31. Kołodziejczyk M. Effect of nitrogen fertilisation and microbial preparations on quality and storage losses in edible potato. Acta Agrophysica. 2016;23(1):67–78.

32. Brierley E.R., Bonner P.L.R., Cobb A.H. Factors influencing the free amino acid content of potato (Solanum tuberosum L) tubers during prolonged storage. Journal of the Science of Food and Agriculture, 1996;70:515–525. https://doi.org/10.1002/(SICI)1097-0010(199604)70:43.0.CO;2-P.

33. Pęksa A., Miedzianka, J., Nemś, A. Amino acid composition of flesh-coloured potatoes as affected by storage conditions. Food Chemistry. 2018;266:335–342. https://doi.org/10.1016/j.foodchem.2018.06.026.

34. Kim H.J., Park W.S., Bae J.Y., Kang S.Y., Yang M.H., Lee S., Lee H.S., Kwak S.S., Ahn M.J. Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. Journal of Food Composition and Analysis. 2015;41:188-193. https://doi.org/10.1016/j.jfca.2015.01.012.

35. Mulinacci N., Ieri F., Giaccherini C., Innocenti M., Andrenelli L., Canova G., Casiraghi M.C. Effect of cooking on the anthocyanins, phenolic acids, glycoalkaloids, and resistant starch content in two pigmented cultivars of Solanum tuberosum L. Journal of Agricultural and Food Chemistry. 2008;56(24):11830-11838. https://doi.org/10.1021/jf801521e.

36. Bellumori M., Innocenti M., Michelozzi M., Cerretani L., Mulinacci N. Coloured-fleshed potatoes after boiling: Promising sources of known antioxidant compounds. Journal of Food Composition and Analysis. 2017;59:1–7. https://doi.org/10.1016/j.jfca.2017.02.004.

37. Navarre D.A., Shakya R., Holden J., Kumar S. The effect of different cooking methods on phenolics and vitamin C in developmentally young potato tubers. American Journal of Potato Research. 2010;87(4):350–359. https://doi.org/10.1007/s12230-010-9141-8.

38. Nayak B., Liu R., Berrios J., Tang J., Derito C. Bioavailability of antioxidants in extruded products prepared from purple potato and dry pea flours. Journal of Agricultural and Food Chemistry. 2011;59:8233-8243. https://doi.org/10.1021/jf200732p.

39. Nemś A., Pęksa A. Polyphenols of coloured-flesh potatoes as native antioxidants in stored fried snacks. LWT. 2018;97:597–602. https://doi.org/10.1016/j.lwt.2018.07.053.

40. Nemś A., Pęksa A., Kucharska A.Z., Sokół-Łętowska A., Kita A., Drożdż W., Hamouz K. Anthocyanin and antioxidant activity of snacks with coloured potato. Food Chemistry. 2015;172:175–182. https://doi.org/10.1016/j.foodchem.2014.09.033.

41. Ruiz A., Aguilera A., Ercoli S., Parada J., Winterhalter P., Contreras B, Cornejo P. Effect of the frying process on the composition of hydroxycinnamic acid derivatives and antioxidant activity in flesh colored potatoes. Food Chemistry. 2018;268:577–584. https://doi.org/10.1016/j.foodchem.2018.06.116.

42. Qiu G., Wang D., Song X., Deng Y., Zhao Y. Degradation kinetics and antioxidant capacity of anthocyanins in air-impingement jet dried purple potato slices. Food Research International, 2018;105:121–128. https://doi.org/10.1016/j.foodres.2017.10.050.

43. Liu Y., Lin-Wang K., Deng C., Warran B., Wang L., Yu B., Yang H., Wang J.,. Espley R.V., Zhang J., Wang D., Allan A.C. Comparative transcriptome analysis of white and purple potato to identify genes involved in anthocyanin biosynthesis. PLoS ONE. 2015;10(6):10:e0129148. https://doi.org/10.1371/journal.pone.0129148.

44. Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C., Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15:573–581. https://doi.org/10.1016/j.tplants.2010.06.005.

45. Montefiori M., Brendolise C., Dare A.P., Lin-Wang K., Davies K.M., Hellens R.P., Allan A.C. In the Solanaceae, a hierarchy of bHLHs confer distinct target specificity to the anthocyanin regulatory complex. J. Exp. Bot.2015;66:1427–1436. https://doi.org/10.1093/jxb/eru494.

46. Carretero-Paulet L., Galstyan A., Roig-Villanova I., Martinez-Garcia J.F., Bilbao-Castro J.R., Robertson D.L. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology. 2010;153:1398–1412. https://doi.org/10.1104/pp.110.153593.

47. Liu Y., Tikunov Y., Schouten R.E., Marcelis L.F.M., Visser R.G.F., Bovy R.A. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Frontiers in Chemistry. 2018;6.(52):1-17. https://doi.org/10.3389/fchem.2018.00052.

48. Cho K., Cho K.S., Sohn H.B., Ha I.J., Hong S.Y., Lee H., Kim Y.M., Nam M.H. Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. Journal of Experimental Botany. 2016; 67:1519–1533. 10.1093/jxb/erv549.

49. Payyavula R.S., Singh R.K., Navarre D.A. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. Journal of Experimental Botany. 2013;64:5115–5131. https://doi.org/10.1093/jxb/ert303.

50. Liu Y., Lin-Wang K., Espley R.V., Wang L., Yang H., Yu B., Allan A.C. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. Journal of Experimental Botany. 2016;67(8):2159–2176. https://doi.org/10.1093/jxb/erw014.

51. D'Amelia V., Aversano R., Batelli G., Caruso I., Castellano Moreno M., Castro-Sanz A.B., Chiaiese P., Fasano C., Palomba F., Carputo D. High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. Plant J. 2014;80(3):527-540. https://doi.org/10.1111/tpj.12653.

52. Bonar N., Liney M., Zhang R., Austin C., Dessoly J., Davidson D., Stephens J., McDougall G., Taylor M., Bryan G.J., Hornyik C. Potato miR828 is associated with purple tuber skin and flesh color. Frontiers in Plant Science. 2018;9(1742):1-16. https://doi.org/10.3389/fpls.2018.01742.

53. Jung C.S., Griffiths H.M., De Jong D.M., Cheng S., Bodis M., De Jong W.S. The potato P locus codes for flavonoid 3′,5′-hydroxylase. Theor. Appl. Genet. 2005;110(2):269-275. https://doi.org/10.1007/s00122-004-1829-z.

54. Strygina K.V., Kochetov A.V., Khlestkina E.K. Genetic control of anthocyanin pigmentation of potato tissues. BMC Genetics. 2019; 20(S1):27 https://doi.org/10.1186/s12863-019-0728-x.

55. Guo J., Han W., Wang M.H. Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: a review. Afr. J. Biotechnol. 2008;7:4966–4972.

56. Jiao Y., Jiang Y., Zhai W., Yang Z. Studies on antioxidant capacity of anthocyanin extract from purple sweet potato (Ipomoea batatas L.). Afr. J. Biotechnol. 2012;11:7046- 7054. http://dx.doi.org/10.5897/AJB11.3859.

57. Wegener C.B., Jansen G. Soft-rot Resistance of Coloured Potato Cultivars (Solanum tuberosum L.): The Role of Anthocyanins. Potato Research. 2007;50(1):31–44. https://doi.org/10.1007/s11540-007-9027-4.

58. André C.M., Schafleitner R., Legay S., Lefèvre I., Aliaga C., Nomberto G., Hoffmann L., Hausman J.F., Larondelle Y., Evers D. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress Phytochemistry. 2009;70(9):1107–1116. https://doi.org/10.1016/j.phytochem.2009.07.008.

59. Landi M., Tattini M., Gould K.S. Multiple functional roles of anthocyanins in plant-environment interactions. Environ. Exp. Bot. 2015;.119:4–17. https://doi.org/10.1016/j.envexpbot.2015.05.012.

60. Kovinich N., Kayanja G., Chanoca A., Otegui M.S., Grotewold E. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav. 2015;10:e1027850. https://doi.org/10.1080/15592324.2015.1027850.


Для цитирования:


Поливанова О.Б., Гинс Е.М. Антиоксидантная активность пигментированного картофеля (Solanum tuberosum L.), содержание антоцианов, их биосинтез и физиологическая роль. Овощи России. 2019;(6):84-90. https://doi.org/10.18619/2072-9146-2019-6-84-90

For citation:


Polivanova O.B., Gins E.M. Antioxidant activity of potatoes (Solanum tuberosum L.) and anthocyanin content, its biosynthesis and physiological role. Vegetable crops of Russia. 2019;(6):84-90. (In Russ.) https://doi.org/10.18619/2072-9146-2019-6-84-90

Просмотров: 51


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)