Preview

Овощи России

Расширенный поиск

Применимость маркеров ISAP, ISSR и SSR в селекционных программах томата

https://doi.org/10.18619/2072-9146-2019-6-24-26

Аннотация

За время тысячелетней селекции культурные растения характеризуются зауженностью генетической основы, отражающейся в одном и нескольких эффектах "бутылочного горлышка". В результате направленной селекционной работы потенциал имеющихся генетических ресурсов становится ограниченным, и требуется дальнейшая работа по поиску генресурсов для улучшения урожайности, устойчивости, пищевой ценности и т.д. С открытием современных методов генетики и биотехнологии некоторые достижения уже используются для улучшения потенциального использование генетических ресурсов. Среди этих методов индуцированный мутагенез можно рассматривать как наиболее полезный для традиционной селекции, хотя его широкое использование требует хороших знаний в области современных молекулярных технологий. В данной публикации мы сделали обзор по использованию SSR, ISSR и ISAP методов и привели примеры их конкретного применения в селекции томата.

Об авторах

И. Панчев
Софийский университет
Болгария

Кафедра биохимии, 

8, Драган Цанков, 1164 София



С. Азиз
НИИ овощеводства Марица
Болгария
Брезнишко шоссе, 32, Пловдив, 4000


Ф. Сарсу
Международное агентство по атомной энергии
Австрия

Секция по селекции и генетике растений,

5, Ваграмер штрассе, 1400 Вена



Н. Томлекова
НИИ овощеводства Марица
Болгария
Брезнишко шоссе, 32, Пловдив, 4000


Список литературы

1. Fentik DA. Review on Genetics and Breeding of Tomato (Lycopersicon esculentum Mill). Adv Crop Sci Tech. 2017;5:306.

2. Lin T, Zhu G, Zhang J et al. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics. 2014;46:1220-1226.

3. Blanca J, Montero-Pau J, Sauvage C et al. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. 2015;16(1):257.

4. Mohan V, Gupta S, Thomas S et al. Tomato fruits show wide phenomic diversity but fruit developmental genes show low genomic diversity. PLoS ONE. 2016;11(4):e0152907.

5. Kalloo G. Genetic improvement of tomato. Springer Science & Business Media; 2012.

6. Minmin D, Ming Z, Lei D et al. Current status and prospects on tomato molecular breeding-from gene cloning to cultivar improvement. Acta Horticulturae Sinica. 2017;44(3):581–600.

7. Kulus D. Tomato molecular breeding – a mini-review of latest achievements. Nauka Przyr. Technol. 2018;12(1):65-72.

8. Saliba-Colombani V, Causse M, Gervais L, Philouze J. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome. 2000;43(1):29-40.

9. Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U. Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell Mol Biol Lett. 2002;7(2A):583-597.

10. He C, Poysa V,•Yu K. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet. 2003;106:363–373.

11. Garcнa-Martнnez S, Andreani L, Garcia-Gusano M et al. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome. 2006;49(6):648-656.

12. Foolad MR. Genome Mapping and Molecular Breeding of Tomato. Int J Plant Genomics. 2007: 64358.

13. Foolad MR, Panthee DR. Marker-assisted selection in tomato breeding. Critical reviews in Plant Sciences. 2012;31 93-123.

14. Iquebal MA, Sarika, Arora V et al. First whole genome based microsatellite DNA marker database of tomato for mapping and variety identification. BMC Plant Biology. 2013;13:197.

15. Osei MK, Prempeh R, Adjebeng-Danquah J et al. Marker-Assisted Selection (MAS): A Fast-Track Tool in Tomato Breeding, In: Recent Advances in Tomato Breeding and Production (Nyaku ST and A Danquah, Eds.), InTechOpen, 2018.

16. Benor S, Zhang M, Wang Z, Zhang H. Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. J Genet Genomics. 2008;35:373−379.

17. Aguirre NC, Lуpez W, Orozco-Cбrdenas M, Coronado YM Vallejo-Cabrera F. Use of microsatellites for evaluation of genetic diversity in cherry tomato. Bragantia. 2017;76(2):220-228.

18. Kaushal A, Singh A, Jeena AS. Genetic diversity in tomato (Solanum lycopersicum L.) genotypes revealed by simple sequence repeats (SSR) markers. J Appl Natural Sci. 2017;9(2):966–973.

19. Carli P, Barone A, Fogliano V et al. Dissection of genetic and environmental factors involved in tomato organoleptic quality. BMC Plant Biology. 2011;11:58.

20. Velpula P, Parihar D, Pinnamaneni R Identification of linked markers for delayed fruit ripening in tomato using simple sequence repeat (SSR) markers. J Plant Mol Breeding. 2016;4(2):26-32.

21. Bramley PM. The regulation and genetic manipulation of carotenoid biosynthesis in tomato fruit. Pure Appl Chem. 1997;69(10):2159-2162.

22. Liu L, Shao Z, Zhang M, Wang Q. Regulation of carotenoid metabolism in tomato. Mol Plant. 2015;8(1):28-39.

23. Danailov Z. Main Trends of Tomato Breeding Development. Plant Breeding Sciences, Bulgaria, 2012.

24. Manoharan RK, Jung H-L, Hwang I et al. Molecular breeding of a novel orangebrown tomato fruit with enhanced beta-carotene and chlorophyll accumulation. Hereditas. 2017;154:1.

25. Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A. Enhancing the healthpromoting effects of tomato fruit for biofortified food. Mediators of inflammation. 2014; Article ID 139873, 16.

26. Kato K, Yoshida R, Kikuzaki A et al. Molecular breeding of tomato lines for mass production of miraculin in a plant factory. J Agric Food Chem. 2010;58(17):9505- 9510.

27. Mashhid H; Atilla D; Babak A-M; Kamil H. Assessment of genetic diversity in tomato landraces using ISSR markers. Genetika. 2016;48(1):25-35.

28. Sacco A, Di Matteo A, Lombardi N et al. Quantitative trait loci pyramiding for fruit quality traits in tomato. Mol Breeding. 2013;31:217-222.

29. Tam SM, Mhiri C, Vogelaar A et al. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet. 2005;110(5):819-831.

30. Seibt KM, Wenke T, Wollrab C et al. Development and application of SINE-based markers for genotyping of potato varieties. Theor Appl Genet. 2012;125(1):185-196.

31. Gharsallah C, Abdelkrim AB, Fakhfakh H et al. SSR marker-assisted screening of commercial tomato genotypes under salt stress. Breed Sci. 2016; 66(5): 823–830.

32. Kiani G, Siahchehreh M. (2018) Genetic Diversity in Tomato Varieties Assessed by ISSR Markers. Int J Veg Sci, 2018; 24(4):353-360

33. Atherton J, Rudich J. The tomato crop: a scientific basis for improvement. Springer Science & Business Media, 2012.

34. El-Awady M, El-Tarras A, Hassan M. Genetic diversity and DNA fingerprint study in tomato (Solanum lycopersicum L.) cultivars grown in Egypt using simple sequence repeats (SSR) markers. African J Biotechnol. 2012;11(96):16233-16240.

35. Miskoska–Milevska E. Determination of genetic diversity among different tomato varieties using SSR markers. Acta Agriculturae Serbica. XVI. 2011;31:9-17.

36. Singh M, Singh NP, Arya S et al. Diversity analysis of tomato germplasm (Lycopersicom esculentum markers) using SSR. Int J Agricult Sci Res (IJASR). 2014;4(4):41-48.

37. Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science. 2010;327:818-822.


Рецензия

Для цитирования:


Панчев И., Азиз С., Сарсу Ф., Томлекова Н. Применимость маркеров ISAP, ISSR и SSR в селекционных программах томата. Овощи России. 2019;(6):24-26. https://doi.org/10.18619/2072-9146-2019-6-24-26

For citation:


Pantchev I., Aziz S., Sarsu F., Tomlekova N. Applicability of ISAP, ISSR and SSR markers in tomato breeding programs. Vegetable crops of Russia. 2019;(6):24-26. https://doi.org/10.18619/2072-9146-2019-6-24-26

Просмотров: 1057


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)