Effects of different phytopathogenic bacteria on the scoto- and photomorphogenesis of vegetable bean seedlings
https://doi.org/10.18619/2072-9146-2025-6-126-137
Abstract
Relevance. The development of bacterial diseases and their severity are determined by the complex interaction between the pathogen, the host plant genotype, and environmental conditions. Light is a key abiotic factor that modulates both physiological processes during etiolation (in darkness) and photomorphogenesis (in light), as well as the pathogenesis process. Furthermore, the use of etiolated seedlings allows for the identification of the specific virulence expression of pathogens, which may be masked or compensated for under light conditions.
The aim of this study was to comprehensively assess the influence of different types of pathogenic bacteria on the morphophysiological parameters of bean seedlings, depending on the cultivar genotype and lighting conditions.
Methodology. Bean varieties with varying field resistance to bacterial diseases were used in the study: Lika, Si Bemol (SBM), and Rant. At the radicle emergence stage, seedlings were inoculated with suspensions of four species of phytopathogenic bacteria: Dickeya chrysanthemi (Dc), Curtobacterium flaccumfaciens (Cf), Pseudomonas syringae (Ps), and Xanthomonas phaseoli (Xp). The control was sterile water. After inoculation, seedlings were grown in plastic containers with sterile perlite under two conditions: a 16-hour photoperiod and complete darkness. Stem and root system length, primordial leaf area, and plant fresh weight were measured after 7 and 14 days, and the types of disease symptoms and their severity were recorded.
Results and Conclusions. The analysis of the influence of phytopathogenic bacteria on the morphogenesis of bean seedlings confirmed that the observed effects are non-linear and determined by the specific combination of factors in the "plant-pathogen-light" triad. The cultivar-specific action on seedling growth processes indicates the leading role of genotype in resistance to bacterial invasion. In this context, growth parameters can serve as early indicators of the development of the infectious process. The most prognostically valuable indicators are plant mass and the area of primordial leaves. Each bacterial species formed a characteristic symptom complex: Ps exhibited a necrotic-toxic type of pathogenesis with the formation of localized necrosis and the ability to induce chlorosis; Xp showed pronounced variability in symptomatology depending on the host genotype, manifesting as depression of root system development and vascular disorders with the formation of vein necrosis; Cf displayed moderate aggressiveness and the ability to induce compensatory reactions in tolerant genotypes with elements of growth stimulation; and Dc exhibited properties of an aggressive vascular polyphage with pronounced tropism towards apical meristems and young leaves, causing wilting and rot of the apex of etiolated bean seedlings. The modulating role of the light regime involved the differentiation of "pathogen x plant" interaction strategies: induction of compensatory reactions under light in the tolerant cultivar 'Lika', growth inhibition and potentiation of symptoms in the dark in the susceptible cultivar 'Rant'; and light-dependent, divergent effects in the moderately susceptible cultivar 'Ci Bemol'. The identified group resistance to bacterial diseases makes the 'Lika' cultivar promising for use in breeding programs for immunity.
Keywords
About the Authors
E. G. KozarRussian Federation
Elena G. Kozar, Cand. Sci. (Agriculture), Leading Researcher
Laboratory of Molecular Immunological Research
143072; 14, Selektsionnaya str.; Moscow district; Odintsovo region; VNIISSOK
I. A. Engalycheva
Russian Federation
Irina A. Engalycheva, Cand. Sci. (Agriculture), Head of the Laboratory
Laboratory of Molecular Immunological Research
143072; 14, Selektsionnaya str.; Moscow district; Odintsovo region; VNIISSOK
References
1. Kefeli V.I. The effect of light on the growth and morphogenesis of higher plants. Moscow: Nauka; 1975. P. 209-227. (in Russ.)
2. Josse E.M., Halliday K.J. Skotomorphogenesis: The dark side of light signalling. Curr. Biol. 2008;18(24):R1144-R1154. doi: 10.1016/j.cub.2008.10.034
3. Volotovski I.D., Sukhaveyeva S.V., Kabachevskaya E.M. Biophysical mechanisms of intracellular signaling (transduction) in higher plants. Proceedings of the National academy of sciences of Belarus. biological series. 2023;68(1):75-88. (in Russ.) 2023;68(1):75-88. doi: 10.29235/1029-8940-2023-68-1-75-88 https://www.elibrary.ru/qugpez
4. Seluzicki A., Burko Y., Chory J. Dancing in the dark: darkness as a signal in plants. Plant Cell Environ. 2017;40(11):2487-2501. doi: 10.1111/pce.13033
5. Golovatskaya I.F., Karnachuk R.A. Dynamics of growth and the content of endogenous phytohormones during kidney bean scoto- and photomorphogenesis. Russian Journal of Plant Physiology. 2007;54(3):407-413.
6. Bai M.Y., Shang J.X., Oh E., et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat. Cell Biol. 2012;14(8):810-817. doi: 10.1038/ncb2546
7. Gupta R., Chakrabarty S.K. Gibberellic acid in plant. Still a mystery unresolved. Plant Signal. Behav. 2013;8(9):e25504. doi: 10.4161/psb.25504
8. Daviere J.M., Achard P. Gibberellin signaling in plants. Development. 2013;140(6):1147-1151. doi: 10.1242/dev.087650
9. Liang T., Mei S., Shi C., et al. UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev. Cell. 2018;44(4):512-523. doi: 10.1016/j.devcel.2017.12.028
10. Yu X., Li L., Zola J., et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant. 2011;65(4):634-646. doi: 10.1111/j.1365-313X.2010.04449.x
11. Alabadí D., Blázquez M.A. Integration of light and hormone signals. Plant Signal. Behav. 2008;3(7):448-450. doi: 10.4161/psb.3.7.5678
12. Kuznetsova V.V., Doroshenko A.S., Kudryakova N.V., Danilova M.N. The role of phytohormones and light in the de-etiolation process. Fiziologiya rastenij. 2020;67(6):563-577. (in Russ.) doi: 10.31857/S0015330320060093 https://www.elibrary.ru/xnilqq
13. Jaillais Y., Vert G. Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting. Nat. Cell Biol. 2012;14(8):788. doi: 10.1038/ncb2554
14. Sineshchekov V., Koppel L. Cryptochrome 1 in the dark affects phytochrome A in etiolated Arabidopsis seedlings shifting the balance between its native types, phyA′ and phyA″. Protoplasma. 2025;4:1-9. doi: 10.1007/s00709-024-01983-4
15. Sharma A., Sharma B., Hayes S., et al. UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat. Commun. 2019;10:4417. doi: 10.1038/s41467-019-12369-1.
16. Achard P., Liao L., Jiang C., et al. DELLA Contribute to plant photomorphogenesis. Plant Physiol. 2007;143(3):1163-1172. doi: 10.1104/pp.106.092155
17. Lochmanová G., Zdráhal Z., Konečná H., et al. Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis: a proteomic analysis. J. Exp. Bot. 2008;59(13):3705-3719. doi: 10.1093/jxb/ern219
18. Cortleven A., Ehret S., Schmülling T., Johansson H. Ethylene-independent promotion of photomorphogenesis in the dark by cytokinin requires COP1 and the CDD complex. J. Exp. Bot. 2019;70(1):165-178. doi: 10.1093/jxb/ery351
19. Chin-Atkins A.N., Craig S., Hocart C.H., Dennis E.S., Chaudhury A.M. Increased endogenous cytokinin in the Arabidopsis ampl mutant corresponds with de-etiolation responses. Planta. 1996;198(4):549-556. doi: 10.1007/BF00262643
20. Cortleven A., Ehret S., Schmülling T., Johansson H. Ethylene-independent promotion of photomorphogenesis in the dark by cytokinin requires COP1 and the CDD complex. J. Exp. Bot. 2019;70(1):165-178. doi: 10.1093/jxb/ery351
21. Ivleva L.V., Golovatskaya I.F., Leonov V.P. Features of the development of bean plant organs (Phaseolus vulgaris L.) in conditions of light and darkness. Biometrika-2000. Available from: https://biometrica-tomsk.ru/biom-2000/iv_leo4.htm (in Russ.)
22. Zádníková P., Wabnik K., Abuzeineh A., et al. A model of differential growth-guided apical hook formation in plants. Plant Cell. 2016;28(10):2464-2477. doi: 10.1105/tpc.15.00569
23. An F., Zhang X., Zhu Z., et al. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res. 2012;22(5):915-927. doi: 10.1038/cr.2012.29
24. Knyazeva T.V. Plant growth regulators in the Krasnodar region: monograph. Krasnodar: EDVI; 2013. 128 p. ISBN 978-5-901957-94-3. (in Russ.)
25. Shcherbakova L.A., Dzhavakhiya V.G., Duan Y., Zhang J. Microbial proteins as elicitors of plant resistance to pathogens and their potential for eco-friendly crop protection in sustainable agriculture (review). Agricultural biology. 2023;58(5):789-820. (in Russ.) doi: 10.15389/agrobiology.2023.5.789rus https://www.elibrary.ru/civlxb
26. Keller H., Bonnet P., Galiana E., et al. Salicylic acid mediates elicitin-induced systemic acquired resistance, but not necrosis in tobacco. MPMI. 1996;9(8):696-703. doi: 10.1094/MPMI-9-0696
27. Ferrari S., Savatin D.V., Sicilia F., et al. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 2013;4:49. doi: 10.3389/fpls.2013.00049
28. Gust A.A., Biswas R., Lenz H.D., et al. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 2007;282(44):32338-32348. doi: 10.1074/jbc.M704886200
29. Vasyukova N.I., Ozeretskovskaya O.L. Jasmonate-dependent defense signaling in plant tissues. Fiziologiya rastenij. 2009;56(5):643-653. (in Russ.) https://www.elibrary.ru/kwicwf
30. Voitsekhovskaya O.V. Phytochromes and other (photo)receptors of information in plants. Fiziologiya rastenij. 2019;66(3):163-177. (in Russ.) doi: 10.1134/S0015330319030151 https://www.elibrary.ru/zbgqqx
31. Shevlyagina O.F., Korobko V.V. Some features of growth of etiolated plants in the aspect of implementation of donor-acceptor relations. Izvestiya of Saratov university. New series. Series: chemistry. biology. ecology. 2019;19(2):170-176. (in Russ.) doi: 10.18500/1816-9775-2019-19-2-170-176 https://www.elibrary.ru/vjgemx
32. Kuznetsov V.V., Bychkov I.A., Kudryakova N.V. Phytomelatonin as an element of the plant hormonal system. Fiziologiya rastenij. 2024;71(4):377-397. (in Russ.) doi: 10.31857/S0015330324040012 https://www.elibrary.ru/mojikn
33. Mosolov V.V., Valueva T.A. Involvement of proteolytic enzymes in plant interaction with phytopathogenic microorganisms. Biokhimiya. 2006;71(8):1034-1042. (in Russ.) https://www.elibrary.ru/opotcp
34. Yarullina L.G., Akhatova A.R., Kasimova R.I. Hydrolytic enzymes and their protein inhibitors in the regulation of plant-pathogen interactions (review). Fiziologiya rastenij. 2016;63(2):205-217. (in Russ.) doi: 10.7868/S0015330316020159 https://www.elibrary.ru/vinzcf
35. Kudryavtseva N.N., Sof'in A.V., Revina T.A., Gvozdeva E.L., Ievleva E.V., Valueva T.A. Secretion of proteolytic enzymes by three phytopathogenic microorganisms. Applied biochemistry and microbiology. 2013;49(5):513-521. (in Russ.) doi: 10.7868/S0555109913050073 https://www.elibrary.ru/qmgewj
36. Valencia-Jimenez A., Arboleda V., Grossi de Sa M.F. Activity of α-amylase inhibitors from Phaseolus coccineus on digestive α-amylases of the coffee berry borer. J. Agric. Food Chem. 2008;56(7):2315-2320. doi: 10.1021/jf0732882
37. Van den Brink J., de Vries R.P. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 2011;91(6):1477-1492. doi: 10.1007/s00253-011-3473-2
38. Feng T., Nyffenegger C., Hojrup P., et al. Characterization of an extension-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1. Appl. Microbiol. Biotechnol. 2014;98(24):10077-10089. doi: 10.1007/s00253-014-5771-y
39. Manjurul Haque Md., Tsuyumu S. Virulence, resistance to magainin II, and expression of pectate lyase are controlled by the PhoP-PhoQ two-component regulatory system responding to pH and magnesium in Erwinia chrysanthemi 3937. J. Gen. Plant Pathol. 2005;71(1):47-50. doi: 10.1007/s10327-004-0158-z
40. Ibragimov R.I., Yarullina L.G., Shpirnaya I.A., Umarov I.A., Tsvetkov V.O., Maksimov I.V. Biochemical factors of plant resistance development to pathogens. Sovremennye Naukoemkie Tekhnologii 2010;4:46-48. (in Russ.) https://www.elibrary.ru/lspuuz
41. Gomes M.T.R., Oliva M.L., Lopes M.T.P., Salas C.E. Plant proteinases and inhibitors : an overview of biological function and pharmacological activity. Curr. Protein Pept. Sci. 2011;12(5):417-436. doi: 10.2174/138920311796391125
42. Volpicella M., Leoni C., Costanza A., et al. Cystatins, serpins and other families of protease inhibitors in plants. Curr. Protein Pept. Sci. 2011;12(5):386-398. doi: 10.2174/138920311796391113
43. Alfano J.R., Collmer A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 2004;42:385-414. doi: 10.1146/annurev.phyto.42.040103.110731
44. Facincani A.P., Moreira L.M., Soares M.R., et al. Comparative proteomic analysis reveals that T3SS, Tfp, and xanthan gum are key factors in initial stages of Citrus sinensis infection by Xanthomonas citri subsp. citri. Funct. Integr. Genomics. 2014;14(1):205-217. doi: 10.1007/s10142-013-0346-z
45. Gazil A., Sarris P.F., Fadouloglou V.E., et al. Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol. 2012;12:188. doi: 10.1186/1471-2180-12-188
46. Abramovitch R., Martin G. Strategies used by bacterial pathogens to suppress plant defenses. Curr. Opin. Plant Biol. 2004;7(4):356-364. doi: 10.1016/j.pbi.2004.05.002
47. Qutob D., Huitema E., Gijzen M., Kamoun S. Variation in structure and activity among elicitins from Phytophthora sojae. Mol. Plant Pathol. 2003;4(2):119-124. doi: 10.1046/j.1364-3703.2003.00158.x
48. Noman A., Aqeel M., Irshad M.K., et al. Elicitins as molecular weapons against pathogens: consolidated biotechnological strategy for enhancing plant growth. Crit. Rev. Biotechnol. 2020;40(6):821-832. doi: 10.1080/07388551.2020.1779174
49. Cernadas R.A., Benedetti C.E. Role of auxin and gibberellin in citrus canker development and in the transcriptional control of cell-wall remodeling genes modulated by Xanthomonas axonopodis pv. citri. Plant Sci. 2009;177(3):190-195. doi: 10.1016/j.plantsci.2009.05.006
50. McClerklin S.A., Lee S.G., Harper C.P., et al. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLoS Pathog. 2018;14(1):e1006811. doi: 10.1371/journal.ppat.1006811
51. Chesnokov Yu.V. Plant resistance to pathogens. Agricultural biology. 2007;42(1):16-35. (in Russ.) https://www.elibrary.ru/hypgcf
52. Ignatov A.N. Distribution of dangerous bacterial plant disease pathogens in the Russian Federation. Zashchita Kartofelya. 2014;2:53-57. (in Russ.) https://www.elibrary.ru/tmmlff
53. Osdaghi E. Curtobacterium flaccumfaciens pv. flaccumfaciens (bacterial wilt of dry beans). CABI Compendium. 2022. doi: 10.1079/cabicompendium.15333
54. Ignatov A.N., Lazarev A.M., Panycheva Yu.S., Provorov N.A., Chebotar' V.K. Potato phytopatogens of genus Dickeya – a mini review of systematics and etiology of diseases. Agricultural biology. 2018;53(1):123-131. (in Russ.) 2018;53(1):123-131. doi: 10.15389/agrobiology.2018.1.123rus https://www.elibrary.ru/ytjoiq
55. Dospekhov B.A. Methodology of experimental work. Moscow: Kolos; 1985. (in Russ.)
Review
For citations:
Kozar E.G., Engalycheva I.A. Effects of different phytopathogenic bacteria on the scoto- and photomorphogenesis of vegetable bean seedlings. Vegetable crops of Russia. 2025;(6):126-137. (In Russ.) https://doi.org/10.18619/2072-9146-2025-6-126-137
JATS XML

































