Assessment of phytopathogenic background of the rhizosphere zone of some representatives of the genus Allium L. on alluvial meadow soils of the Zamoskvoretskaya floodplain
https://doi.org/10.18619/2072-9146-2025-6-120-125
Abstract
Relevance. Soil pathogens can cause serious damage to plants and lead to crop losses. The formation of microbial communities in the rhizosphere is determined by the choice of host plants; the microbiota, its composition, and activity are largely determined by a complex system of microbial-plant interactions, where the individual characteristics of plants and their root secretions play a major role in the formation of the pathogenic pool. Until now, the rhizosphere of Allium crops has not been studied to a large extent, so research in the field of studying microbial diversity when growing vari-
ous species and varieties of this species is important for identifying resistant ones and obtaining material for further genetic research to search for genes of resistance to various diseases.
Materials and Methods. The study was conducted at VNIIO – a branch of the branch of the FSBSI "Federal Scientific Vegetable Center". 13 species of the genus Allium from the VNIIO collection were studied. The phytopathogenic background of the rhizosphere zone during onion cultivation was assessed in the middle of the growing season using soil microbiology methods.
Results. Of the 13 Allium species studied, only A. galanthum had no background of pathogenic micromycetes, so the species may be promising for searching for genes of resistance to pathogenic micromycetes. A. galanthum is an important wild edible plant species that plays an important role in food security and cultivation of onions (A. cepa). A. schoenoprasum, A. altyncolicum and A. sibphorpianum showed a high level of resistance to bacterial infections, which may be important for searching for the corresponding resistance genes. The rhizosphere zone under the onions A. fistulosum, A. pskemense, A. tuberosum had the largest number and biodiversity of pathogenic microbiota. The technologies for their cultivation should include measures to protect against diseases, including the treatment (disinfection) of seeds, soil and vegetative plants.
Conclusions. A. galanthum may be promising for searching for genes of resistance to fungal diseases of onion. A. schoenoprasum, A. altyncolicum and A. sibphorpianum are resistant to bacterial infections, which can also be used to search for the corresponding resistance genes. The species A. fistulosum, A. pskemense, A. tuberosum were characterized by the least resistance to diseases.
About the Authors
M. I. IvanovaRussian Federation
Maria I. Ivanova, Dr. Sci. (Agriculture), Prof., Senior Researcher
140153; Moscow region; Ramensky district; p. 500, Vereya
M. Yu. Markarova
Russian Federation
Maria Yu. Markarova, Cand. Sci. (Biology), Senior Researcher
143072; 14, Selektsionnaya str.; Moscow district; Odintsovo region; VNIISSOK
References
1. Olanrewaju O.S., Ayangbenro A.S., Glick B.R., Babalola O.O., Ayangbenro A. Plant health: Feedback effect of root exudates-rhizobiome interactions. Appl. Microbiol. Biotechnol. 2019;(103): 1155–1166. doi: 10.1007/s00253-018-9556-6
2. Venturi V., Keel C. Signaling in the rhizosphere. Trends Plant Sci. 2016;(21):187–198. doi: 10.1016/j.tplants.2016.01.005
3. Bulgarelli D., Schlaeppi K., Spaepen S., Ver Loren van Themaat E., Schulze-Lefert P. Structure and function of bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013;(64):807–838. doi: 10.1146/annurev-arplant-050312-120106
4. Jacoby R., Peukert M., Succurro A., Koprivova A., Kopriva S. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci. 2017;(8):1617. doi: 10.3389/fpls.2017.01617
5. Reinhold-Hurek B., Bunger W., Burbano C.S., Sabale M., Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol. 2015;53(1):403–24. doi: 10.1146/annurev-phyto-082712-102342
6. Agler M.T., Ruhe J., Kroll S., Morhenn C., Kim S.T., Weigel D. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14(1):e1002352. doi: 10.1371/journal.pbio.1002352
7. Schlaeppi K., Dombrowski N., Oter R.G., Van Themaat E.V.L., Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111(2):585–592. doi: 10.1073/pnas.1321597111
8. Zgadzaj R., Garrido-Oter R., Jensen D.B., Koprivova A., Schulze-Lefert P., Radutoiu S. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci USA. 2016;113(49):E7996–8005. doi: 10.1073/pnas.1616564113
9. Tkacz A., Cheema J., Chandra G., Grant A., Poole P.S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 2015;9(11):2349–59. doi: 10.1038/ismej.2015.41
10. Chaparro J.M., Badri D.V., Vivanco J.M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8(4):790–803. doi: 10.1038/ismej.2013.196
11. Broeckling C.D., Broz A.K., Bergelson J., Manter D.K., Vivanco J.M. Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol. 2008;74(3):738–744.
12. Lareen A., Burton F., Schäfer P. Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol. 2016;90(6):575–587. doi: 10.1007/s11103-015-0417-8
13. Xue C., Penton C.R., Shen Z., Zhang R., Huang Q., Li R. Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Rep. 2015;5(1):11124. doi: 10.1038/srep11124
14. Raaijmakers J.M., Mazzola M. Soil immune responses. Science. 2016;352(6292):1392–3. doi: 10.1126/science.aaf3252
15. Yin C., Casa Vargas J.M., Schlatter D.C. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome. 2021;(9):86. doi: 10.1186/s40168-020-00997-5
16. Verma J.P., Jaiswal D.K., Krishna R., Prakash S., Yadav J., Singh V. Characterization and screening of thermophilic Bacillus strains for developing plant growth promoting consortium from hot spring of Leh and Ladakh Region of India. Frontiers in Microbiology. 2018;(9):1293. doi: 10.3389/fmicb.2018.01293
17. Krishna R., Ansari W.A., Verma J.P., Singh M. Modern molecular and omics tools for understanding the plant growth-promoting rhizobacteria. In: Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Cambridge: Woodhead Publishing. 2019. P. 39-53.
18. Yurgel S.N., Abbey L., Loomer N., Gillis-Madden R., Mammoliti M. Microbial communities associated with storage onion. Phytobiomes. 2018;2(1):35-41. doi: 10.1094/PBIOMES-12-17-0052-R
19. Knerr A.J.N., Wheeler D., Schlatter D., Sharma-Poudyal D., du Toit L.J., Paulitz T.C. Arbuscular mycorrhizal fungal communities in organic and conventional onion crops in the Columbia Basin of the Pacific Northwest United States. Phytobiomes Journal. 2018;2(4):194-207.
20. Qiu Z., Li N., Lu X., Zheng Z., Zhang M., Qiao X. Characterization of microbial community structure and metabolic potential using Illumina MiSeq platform during the black garlic processing. Food Research International. 2018;(106):428-438. doi: 10.1016/j.foodres.2017.12.081
21. Huang Y.H. Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing. Journal of Integrative Agriculture. 2018;17(2):359-367. doi: 10.1016/S2095-3119(17)61731-3
22. Matthews A., Pierce S., Raymond B. Rhizobacterial community assembly patterns vary between crop species. Frontiers in Microbiology. 2019;(10):581. doi: 10.3389/fmicb.2019.00581
23. Chen S., Zhou X., Yu H., Wu F. Root exudates of potato onion are involved in the suppression of clubroot in a Chinese cabbagepotato onion-Chinese cabbage crop rotation. European Journal of Plant Pathology. 2018;150(3):765-777. doi: 10.1007/s10658-017-1307-5
24. Nishioka T., Marian M., Kobayashi I., Kobayashi Y., Yamamoto K., Tamaki H., Suga H., Shimizu M. Microbial basis of Fusarium wilt suppression by Allium cultivation. Scientific Reports. 2019;9(1):1715. doi: 10.1038/s41598-018-37559-7
25. Abdelrahman M., Elayed M., Sato S., Hirakawa H., Ito S.I., Tanaka K., Shigyo M. RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum – A. cepa monosomic addition lines. PLOS ONE. 2017;12(8):e0181784. doi: 10.1371/journal.pone.0181784
26. Methods of soil microbiology and biochemistry. (Edited by D.G. Zvyagintsev). Moscow: Moscow State University Press. 1991. 302 p.
27. Zenova G.M., Kurakov A.V. Methods for determining the structure of complexes of soil actinomycetes and fungi. M. Publishing house of Moscow State University. 1988. 53 p.
28. Zenova G.M., Stepanov A.L., Likhacheva A.A., Manucharova N.A. Practical training in soil biology. M.: Moscow State University Publishing House, 2002. 120 p.
29. Tepper E.Z., Shilnikova V.K., Pereverzeva G.I. Microbiology Workshop. M.: Drofa, 2004. 256 p.
30. Identifier of Bergey's bacteria. In 2 volumes. Edited by J. Hoult, N. Krieg, P. Sneath, J. Staley, S. Williams. Moscow: Mir, 1997. Vol. 1. 432 p. Vol. 2. 368 p.
31. Litvinov M.A. Identifier of microscopic soil fungi. Moscow: Nauka, 1967. 310 p.
32. Dobrovolskaya T.G. Structure of bacterial communities of soils. M.: ITC "Akademkniga", 2002. 282 p.
33. Al-Khayri J.M., Jain S.M., Johnson D.V. (Eds.), Advances in Plant Breeding strategies: Vegetable crops: Volume 8: bulbs, Roots and Tubers, Springer International Publishing, Cham. 2021.
34. Manjunathagowda D.C., Muthukumar P., Gopal J., Prakash M., Bommesh J.C., Nagesh G.C., Megharaj K.C., Manjesh G.N., Anjanappa M. Male sterility in onion (Allium cepa L.): origin: origin, evolutionary status, and their prospectus. Genet. Resour. Crop Evol. 2021;(68):421-439. doi: 10.1007/s10722-020-01077-1
35. Ochar K., Kim S.-H. Conservation and global distribution of onion (Allium cepa L.) germplasm for agricultural sustainability. Plants. 2023;(12):3294. doi: 10.3390/plants12183294
36. Yamashita K., Takatori Y., Tashiro Y. Chromosomal location of a pollen fertility-restoring gene, rf, for CMS in Japanese bunching onion (Allium fistulosum L.) possessing the cytoplasm of A. galanthum Kar. et Kir. revealed by genomic in situ hybridization. Theoretical and Applied Genetics. 2005;(111):15-22. doi: 10.1007/s00122-005-1941-8
37. Scholten O.E., Van Kaauwen M.P.W., Shahin A., Hendrickx P.M., Keizer L.C.P., Burger K., Van Heusden A.W., Van Der Linden C.G., Vosman B. SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biol. 2016;(16):187. doi: 10.1186/s12870-016-0879-0
38. Ivanova M.I., Bukharov A.F., Baleev D.N., Bukharova A.R., Kashleva A.I., Seredin T.M., Razin O.A. Biochemical composition of leaves of Allium L. species in the conditions of the Moscow region. Achievements of science and technology in agro-industrial complex. 2019;33(5):47-50. doi: 10.24411/0235-2451-2019-10511 https://elibrary.ru/zndocx
39. Kadyrbayeva G., Zagórska J., Grzegorczyk A., Gaweł-Bęben K., Strzępek-Gomółka M., Ludwiczuk A., Czech K., Kumar M., Koch W., Malm A., Głowniak K., Sakipova Z., Kukula-Koch W. The Phenolic Compounds Profile and Cosmeceutical Significance of Two Kazakh Species of Onions: Allium galanthum and A. turkestanicum. Molecules. 2021;(26):5491. doi: 10.3390/molecules26185491
40. Wu J., Liu D., Wariss H.M., Zhang H., Su M., Li W., Han Z. Genetic diversity and construction of core collection provides new insight for the conservation of edible Allium galanthum in Xinjiang. Scientia Horticulturae. 2025;(341):113961.
41. Perezhogina V.V. Study and maintenance of the world collection of onions and garlic in a living form : guidelines. St. Petersburg: VIR, 2005. 109 p. https://elibrary.ru/oufnwh
Review
For citations:
Ivanova M.I., Markarova M.Yu. Assessment of phytopathogenic background of the rhizosphere zone of some representatives of the genus Allium L. on alluvial meadow soils of the Zamoskvoretskaya floodplain. Vegetable crops of Russia. 2025;(6):120-125. (In Russ.) https://doi.org/10.18619/2072-9146-2025-6-120-125
JATS XML

































