Preview

Vegetable crops of Russia

Advanced search

Carbon nanotubes in vegetable growing (review)

https://doi.org/10.18619/2072-9146-2025-6-105-112

Abstract

   Relevance. This review examines the comprehensive application of carbon nanotubes (CNTs) in vegetable growing. Various aspects of their use are highlighted, from improving seed germination and stimulating vegetative growth to protecting plants under adverse conditions.

   Results. A unique feature of these nanomaterials is their ability to intelligently transport active substances. They precisely deliver fertilizers and pesticides directly to the plant, releasing them at the right time. This approach allows for the creation of an ideal plant nutrition system, which significantly improves plant development, increases yield, and enhances product quality. Particular attention is given to the mechanisms by which CNTs influence plant cells, including direct interactions with biomolecules and indirect influences through the regulation of oxidative processes.

   Conclusion. The potential for using CNTs to improve water use efficiency in arid regions is highlighted. In the presence of excess salts, nanotubes demonstrate their protective properties: they accumulate in plant tissues and enhance the functioning of aquaporins. This promotes more efficient water absorption and transport, reducing the negative impact of salt stress on plants. The current challenges and potential development areas of this technology in vegetable growing are also discussed.

About the Authors

A. V. Yanchenko
All-Russian Research Institute of Vegetable Growing – branch of the Federal State Budgetary Scientific Institution "Federal Scientific Vegetable Center"
Russian Federation

Alexey V. Yanchenko, Cand. Sci. (Agriculture), Leading Researcher, Head of the Laboratory

Laboratory of Physiological Foundations of Seed Science

140153; Moscow region; Ramensky district; p. 500, Vereya 



A. Yu. Fedosov
All-Russian Research Institute of Vegetable Growing – branch of the Federal State Budgetary Scientific Institution "Federal Scientific Vegetable Center"
Russian Federation

Alexander Yu. Fedosov, Junior Researcher

140153; Moscow region; Ramensky district; p. 500, Vereya



M. I. Ivanova
All-Russian Research Institute of Vegetable Growing – branch of the Federal State Budgetary Scientific Institution "Federal Scientific Vegetable Center"
Russian Federation

Maria I. Ivanova, Dr. Sci. (Agriculture), Prof., Senior Researcher

140153; Moscow region; Ramensky district; p. 500, Vereya



A. M. Menshikh
All-Russian Research Institute of Vegetable Growing – branch of the Federal State Budgetary Scientific Institution "Federal Scientific Vegetable Center"
Russian Federation

Alexander M. Menshikh, Cand. Sci. (Agriculture), Leading Researcher

140153; Moscow region; Ramensky district; p. 500, Vereya



E. V. Yanchenko
All-Russian Research Institute of Vegetable Growing – branch of the Federal State Budgetary Scientific Institution "Federal Scientific Vegetable Center"
Russian Federation

Elena V. Yanchenko, Cand. Sci. (Agriculture), Leading Researcher

140153; Moscow region; Ramensky district; p. 500, Vereya



References

1. Acharya A. Pal P.K. Agriculture nanotechnology: translating research outcome to field applications by influencing environmental sustainability. NanoImpact. 2020;19:100232. doi: 10.1016/j.impact.2020.100232

2. Nazarov P.A., Baleev D.N., Ivanova M.I., Sokolova L.M., Karakozova M.V. Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae. 2020;12(3):46-59. (In Russ.) doi: 10.32607/actanaturae.11026

3. Bukharov A.F., Fedosov A.Yu., Ivanova M.I. Impacts of climate change on vegetable production and ways to overcome them. Vegetable crops of Russia. 2023;(3):41-49. (In Russ.) doi: 10.18619/2072-9146-2023-3-41-49 https://www.elibrary.ru/ncmioc

4. Vogel E., Donat M.G., Alexander L.V., Meinshausen M., Ray D.K., Karoly D., Meinshausen N., Frieler K. The effects of climate extremes on global agricultural yields. Environ Res Lett. 2019;14:054010. doi: 10.1088/1748-9326/ab154b

5. Fedosov A.Yu., Menshikh A.M. Precision farming technologies in vegetable growing. Vegetable crops of Russia. 2022;(6):40-45. (In Russ.) doi: 10.18619/2072-9146-2022-6-40-45 https://www.elibrary.ru/zrkrpi

6. Menshikh A.M., Fedosov A.Yu., Yanchenko V.A., Fartukov V.A., Ivanova M.I. Intelligent irrigation system: digital solutions in vegetable growing. RIce growing. 2024;23,2(63):76-84. (In Russ.) doi: 10.33775/1684-2464-2024-63-2-76-84 https://www.elibrary.ru/shioub

7. Lowry G.V., Avellan A., Gilbertson L.M. Opportunities and challenges for nanotechnology in the agritech revolution. Nat Nanotechnol. 2019;14:517–22. doi: 10.1038/s41565-019-0461-7

8. Kah M., Kookana R.S., Gogos A., Bucheli T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018;13:677–84. doi: 10.1038/s41565-018-0131-1

9. Zelenkov V.N., Ivanova M.I., Latushkin V.V., Potapov V.V., Timakova L.N. Hydrothermal nanosilica in the production of microgreens as a functional food product. Topical biotechnology. 2022;(1):291. (In Russ.) doi: 10.20914/2304-4691-2022-1-291

10. Poddar K., Vijayan J., Ray S., Adak T. Nanotechnology for sustainable agriculture. In: Biotechnology for sustainable agriculture. Amsterdam: Elsevier; 2018. P. 281–303. doi: 10.1016/B978-0-12-812160-3.00010-6

11. Zhao L., Lu L., Wang A., Zhang H., Huang M., Wu H., Xing B., Wang Z., Ji R. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem. 2020;68:1935–47. doi: 10.1021/acs.jafc.9b06615

12. Malik A., Mor V.S., Tokas J., Punia H., Malik S., Malik K., Sangwan S., Tomar S., Singh P., Singh N. Biostimulant-treated seedlings under sustainable agriculture: a global perspective facing climate change. Agronomy. 2021;11:14. doi: 10.3390/agronomy11010014

13. Safdar M., Kim W., Park S. et al. Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnol. 2022;(20):275. doi: 10.1186/s12951-022-01483-w

14. Patel A., Tiwari S., Parihar P., Singh R., Prasad S.M. Carbon nanotubes as plant growth regulators: impacts on growth, reproductive system, and soil microbial community. In: Nanomaterials in plants, algae and microorganisms. Amsterdam: Elsevier; 2019. P. 23–42. doi: 10.1016/b978-0-12-811488-9.00002-0

15. Mathew S., Tiwari D., Tripathi D. Interaction of carbon nanotubes with plant system : a review. Carbon Lett. 2021;31:167–176. doi: 10.1007/s42823-020-00195-1

16. Cañas J.E., Long M., Nations S., Vadan R., Dai L., Luo M., Ambikapathi R., Lee E.H., Olszyk D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem. 2008;27:1922–31. doi: 10.1897/08-117.1

17. Lin C., Fugetsu B., Su Y., Watari F. Studies on toxicity of multiwalled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater. 2009;170:578–83. doi: 10.1016/j.jhazmat.2009.05.025

18. Khodakovskaya M., Dervishi E., Mahmood M., Xu Y., Li Z., Watanabe F., Biris A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3:3221–7. doi: 10.1021/nn900887m

19. Martínez-Ballesta M.C., Zapata L., Chalbi N., Carvajal M. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnol. 2016;14(1):42. doi: 10.1186/s12951-016-0199-4.

20. Kumar V., Sachdev D., Pasricha R., Maheshwari P.H., Taneja N.K. Zinc-supported multiwalled carbon nanotube nanocomposite: a synergism to micronutrient release and a smart distributor to promote the growth of onion seeds in arid conditions. ACS Appl Mater Interfaces. 2018;10:36733–45. doi: 10.1021/acsami.8b13464

21. Giraldo J.P., Wu H., Newkirk G.M., Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019;(14):541–553. doi: 10.1038/s41565-019-0470-6

22. Haghighi M., Teixeira da Silva J.A. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J. Crop Sci. Biotechnol. 2014;(17): 201–208. doi: 10.1007/s12892-014-0057-6

23. Pourkhaloee A., Haghighi M., Saharkhiz M.J., Jouzi H., Doroodmand M.M. Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol. 2011;(33):155–69.

24. Alimohammadi M., Xu Y., Wang D., Biris A.S., Khodakovskaya M.V. Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology. 2011;22:295101. doi: 10.1088/0957-4484/22/29/295101

25. Khodakovskaya M.V., Kim B.S., Kim J.N., Alimohammadi M., Dervishi E., Mustafa T., Cernigla C.E. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 2013;9:115–123. doi: 10.1002/smll.201201225

26. Begum P., Fugetsu B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater. 2012;243:212–22. doi: 10.1016/j.jhazmat.2012.10.025

27. Srivastava A., Rao D.P. Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nantubes. Eur. Chem. Bull. 2014;(3): 502–504. doi: 10.17628/ECB.2014.3.502-504

28. Villagarcia H., Dervishi E., de Silva K., Biris A.S., Khodakovskaya M.V. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small. 2012;8:2328–34. doi: 10.1002/smll.201102661

29. Lahiani M.H., Dervishi E., Chen J., Nima Z., Gaume A., Biris A.S., Khodakovskaya M.V. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces. 2013;5:7965–73. doi: 10.1021/am402052x

30. Kwak S.-Y., Lew T.T.S., Sweeney C.J., Koman V.B., Wong M.H., Bohmert-Tatarev K., Snell K.D., Seo J.S., Chua N.-H., Strano M.S. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol. 2019;14:447–55. doi: 10.1038/s41565-019-0375-4

31. Thines R., Mubarak N., Nizamuddin S., Sahu J., Abdullah E., Ganesan P. Application potential of carbon nanomaterials in water and wastewater treatment : a review. J Taiwan Inst Chem Eng. 2017;72:116–33. doi: 10.1016/j.jtice.2017.01.018

32. Maksimova YG. Microorganisms and carbon nanotubes: interaction and applications. Appl Biochem Microbiol. 2019;55:1–12. doi: 10.1134/S0003683819010101

33. González-García Y., Cadenas-Pliego G., Alpuche-Solís Á.G., Cabrera R.I., Juárez-Maldonado A. Carbon nanotubes decrease the negative impact of Alternaria solani in tomato crop. Nanomaterials. 2021;11:1080. doi: 10.3390/nano11051080

34. Wang X., Zhou Z., Chen F. Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials. 2017;10:1375. doi: 10.3390/ma10121375

35. De La Torre-Roche R., Cantu J., Tamez C., Zuverza-Mena N., Hamdi H., Adisa I.O., Elmer W., Gardea-Torresdey J., White J.C. Seed Biofortification by engineered nanomaterials: a pathway to alleviate mal-nutrition? J. Agric Food Chem. 2020;68:12189–202. doi: 10.1021/acs.jafc.0c04881

36. Lahiani M.H., Dervishi E., Ivanov I., Chen J., Khodakovskaya M: Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology. 2016;27:265102. doi: 10.1088/0957-4484/27/26/265102

37. O’Neill M.A., York W.S. The Composition and Structure of Plant Primary Cell Walls In book : Annual Plant Reviews online. April 2018. Pp. 1-54. doi: :10.1002/9781119312994.apr0067

38. Rai M., Ribeiro C., Mattoso L., Duran N. Nanotechnologies in food and agriculture. Berlin: Springer; 2015. doi: 10.1007/978-3-319-14024-7

39. Guo X., Zhao J., Wang R., Zhang H., Xing B., Naeem M., Yao T., Li R., Xu R., Zhang Z. Effects of graphene oxide on tomato growth in different stages. Plant Physiol Biochem. 2021;162:447–55. doi: 10.1007/978-981-97-5104-4_8

40. Lahiani M.H., Nima Z.A., Villagarcia H., Biris A.S., Khodakovskaya M.V. Assessment of Effects of the Long-Term Exposure of Agricultural Crops to Carbon Nanotubes. J Agric Food Chem. 2018;66(26):6654-6662. doi: 10.1021/acs.jafc.7b01863

41. Servin A., Elmer W., Mukherjee A., De la Torre-Roche R., Hamdi H., White J.C., Dimkpa C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research. 2015;17(2). doi: 10.1007/s11051-015-2907-7

42. Chen G., Qiu J., Liu Y., Jiang R., Cai S., Liu Y., Zhu F., Zeng F., Luan T., Ouyang G. Carbon nanotubes act as contaminant carriers and translocate within plants. Sci Rep. 2015;5:1–9. doi: 10.1038/srep15682


Review

For citations:


Yanchenko A.V., Fedosov A.Yu., Ivanova M.I., Menshikh A.M., Yanchenko E.V. Carbon nanotubes in vegetable growing (review). Vegetable crops of Russia. 2025;(6):105-112. (In Russ.) https://doi.org/10.18619/2072-9146-2025-6-105-112

Views: 92

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)