Some biochemical parameters of Scutellaria baicalensis Georgi herb at introduction into the Non-Chernozem belt of Russia
https://doi.org/10.18619/2072-9146-2025-3-61-69
Abstract
Relevance. Scutellaria baicalensis Georgi is a valuable medicinal plant, its raw material is roots. It is a protected species of the East Asian flora of the Russian Federation. The plant is included in 6 Red Data Books of the Far East and Eastern Siberia. Works on introduction of Scutellaria baicalensis carried out in many regions of the Russian Federation. At present, multifaceted biochemical studies of the flowering shoot mass of Baikal skullcap are being carried out everywhere.
The aim of the investigation is study of some biochemical parameters of flowering shoot mass of Baikal skullcap by structure in different weather conditions in different years.
Materials and methods. The object of the study was the population of Baikal skullcap from the biocollections of All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (Central Region of the Non-Chernozem belt). Studies were conducted in 2018 (optimal weather conditions) and 2020 (stresses weather conditions). The biochemical composition of the shoot of Scutellaria baicalensis studied in the Laboratory and Analytical Department of the FSBSI “Federal Scientific Vegetable Center” according to the following parameters: dry matter, ascorbic acid, total content of water-soluble antioxidants and total antioxidants in the alcoholic extract. The accumulation of these substances done in leaves located on the upper, middle and lower levels of leaves, inflorescences and buds, stems.
Results. Dry matter content of Scutellaria baicalensis herb components did not differ significantly by years. The maximum meaning of this indicator was in stems – 38.89-39.51 %, and the minimum – in inflorescences – 21.07 %, regardless of the level of location on the shoot. The total content of water-soluble antioxidants in the shoot mass under optimal precipitation was statistically significantly higher than this factor under dry weather conditions by 1.5-2.7 times. In inflorescences and buds the content of water-soluble antioxidants was lower than on average in leaves by 2.6-3.6 times. Ascorbic acid accumulation in leaves of S. baicalensis in a weather-optimal year (2018) exceeded its content in a year (2020) with numerous extremely changes in precipitation and air temperature during the growing season by 1.5 times. The total antioxidant content in the alcoholic extract in the shoot mass in the year with significant fluctuations in weather conditions (2020) was significantly higher than that in the year with stable weather conditions (2018). In both years of the study, the maximum value the total content of antioxidants observed in the leaves. In a weather-optimal year, these were the leaves of the lower level (77.52 mg-eq GA/g d.w.), and in a year with extremely fluctuations in weather parameters (2020), these were upper level (83.05 mg-eq GA/g d.w.).
About the Authors
A. V. MolchanovaRussian Federation
Anna V. Molchanova – Cand. Sci. (Agriculture), Senior Researcher of Analytical Department
14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072,
Grina st., 7, Moscow, 117216
E. Yu. Babaeva
Russian Federation
Elena Yu. Babaeva – Cand. Sci. (Biology), Leading Researcher Botanical Garden Laboratory All-Russian Scientific Research Institute of Medicinal and Aromatic Plants
14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072,
Grina st., 7, Moscow, 117216
References
1. Plants of the World Online, 2017. March 2021. http://www.plantsoftheworldonline.org/
2. Georgi J.G. Bemerkungeneiner Reiseim Russischen Reich. St. Petersburg. 1775;(1):223.
3. "Chzhud-shi": Canon of Tibetan Medicine. .Moscow: Izd. "Oriental Literature", RAS, 2001:766. (in Russ.)
4. Song J.W., Long J.Y., Xie L., Zhang L.L., Xie Q.X., Chen H. J., Deng M., Li X. F. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chinese Medicine. 2020;(15):102 https://doi.org/10.1186/s13020-020-00384-0
5. Wang Z.-L., Wang S., Kuang Y., Hu Z.-M., Qiao X., Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharmaceutical biology. 2018;56(1):465-484. https://doi.org/10/1080/13880209.2018.1492620.
6. Shibata K., Hattoris S. Uber den ort der glucuronsaureverbindung in baikalin. Acta Phytochimica (Tokyo). 1930;(5):117-118.
7. Malikov V., Yuldashev M. Phenolic compounds of plants of the Scutellaria L. genus. Distribution, structure, and properties. Chem. Nat. Compd. 2002;(38):358-406.
8. Olennikov D.N., Chirikova N.K., Tankhaeva L.M., Phenolic compounds of Baikal skullcap (Scutellaria baicalensis Georgi). Khimija rastitel'nogo syr'ja. 2009;(4):89–98. (in Russ.) https://www.elibrary.ru/kyncel
9. Li H.B, Jiang Y., Chen F. Separation methods used for Scutellaria baicalensis active components. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004;(812):277–290. https://doi.org/10.1016/J.JCHROMB.2004.06.045,1-2SPEC.ISS
10. Lin W., Liu S., Wu B. Structural identification of chemical constituents from Scutellaria baicalensis by HPLC-ESI-MS/MS and NMR spectroscopy. Asian J. Chem. 2013;25(7):3799–3805. https://doi.org/10.14233/AJCHEM.2013.13788
11. Park H.S., Park K.I., Hong G.E., Nagappan A., Lee H.J., Kim E.H., Lee W.S., Shin S.C., Seo O.N., Won C.K., Cho J.H., Kim G.S. Korean Scutellaria baicalensis Georgi methanol extracts inhibits metastasis via the Forkhead Box M1 activity in hepatocellular carcinoma cells. Journal of Ethnopharmacology. 2014;(155):847-851.
12. Olennikov D.N., Chirikova N.K., Tankhaeva L.M. Chemical composition of Baikal skullcap (Scutellaria baicalensis Georgi). Khimija rastitel'nogo syr'ja. 2010;(2):77–84. (in Russ.) https://www.elibrary.ru/mtcsdz
13. Zhao T., Tang H., Xie L., Zheng Y., Ma Z., Sun Q., Li X. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Pharmacy and Pharmacology. 2019;71(9):1353–1369, https://doi.org/10.1111/jphp.13129.
14. Snell-Rood E.C., Ehlman S.M. Phenotypic Plasticity and Evolution. 2021;22.
15. Chancha D. K., Singh K., Bhushan B., Chaudhary J. S., Kumar S., Varma A. K., Agnihotri N., Garg A. An updated review of Chinese skullcap (Scutellaria baicalensis): Emphasis on phytochemical constituents and pharmacological attributes. Pharmacological Research – Modern Chinese Medicine. 2023;(9):100326 https://doi.org/10.1016/j.prmcm.2023.100326.
16. Kasote D.M., Katuare S.S., Hegde M.V., Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015;(11):982-991.
17. Wu Z., Liu S., Wang F., Du Y., Zou S. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis) under cadmium stress. Environ. Exp. Bot. 2017;(133):1-11.
18. Kim Y.-H., Khan A.L., Waqas M., Lee I.-J. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. Frontiers Plant Science. 2017;(8):510.
19. Golubkina N.A., Kekina E.G., Molchanova A.V., Antoshkina M.S., Nadezhkin S.M., Soldatenko A.V. Antioxidants of plants and methods for their determination. 2020. Infra-M, Moscow. Russia. 181 p. ISBN 978-5-16-015666- 8. (in Russ.) https://doi.org/10.12737/1045420. https://www.elibrary.ru/vtgigm
20. Agati G., Azzarello E., Pollastri S., Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science. 2012;(196):67-76. https://doi.org/10.1016/j.plantsci.2012.07.014
21. Smirnoff N., Wheeler G. L. Ascorbic Acid in Plants: Biosynthesis and Function. Critical Reviews in Plant Sciences. 2000;19(4):267-290. https://doi.org/10.1080/07352680091139231
22. Barth C., De Tullio M., Conklin P.L. The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany. 2006;57(8):1657–1665.
23. Ahn Y.-O., Kwon S.-Y., Lee H.-S., Park I.-H., Kwak S.-S. Biosynthesis and Metabolism of Vitamin C in Suspension Cultures of Scutellaria baicalensis. Journal of Biochemistry and Molecular Biology. 1999;32(5):451-455.
24. Golubkina N.A., Pivovarov V.F., Nadezhkin S.M., Loseva T.A., Sokolova A.Ya. Global environmental crisis. Problems and Solutions. Moscow, VNIISSOK, 2013: 208. (in Russ.) ISBN 978-5-901695-58-6. https://www.elibrary.ru/vkjtev
25. GOST 31-640-2012. Feed. Methods of determination of dry matter content. Moscow: Standardinform. 2012. 12 p. (in Russ.)
26. Cai F., Mi N., Ming H., Zhang Y., Zhang H., Zhang S., Zhao X., Zhang B. Responses of dry matter accumulation and partitioning to drought and subsequent rewatering at different growth stages of maize in Northeast China. Frontiers in Plant Science. 2023;14:1110727. https://doi.org/10.3389/fpls.2023.1110727
27. Kumudini S., Hume D. J., Chu G. Genetic Improvement in Short Season Soybeans: I. Dry Matter Accumulation, Partitioning, and Leaf Area Duration. Crop science. 2001;41(2):391-398.
28. Information-analytical system ‘Specially Protected Natural Areas of Russia’ (IAS ‘SPNA RF’) / FGBU ‘AARI’, Laboratory of geoinformation technologies. 06.12.2012. URL: http: //oopt.aari.ru/ (date of reference: 07.10.2024). (in Russ.)
29. Shmarova A.A., Pivovarova N.S. Risk assessment strategy for obtaining suspension culture of Scutellaria baicalensis Georgi. Biomics. 2022;14(2):111- 119. (In Russ.) https://doi.org/10.31301/2221-6197.bmcs.2022-8 https://www.elibrary.ru/loqcyo
30. Chirikova N.K., Olennikov D.N. Composition of the aerial part of Scutellaria baicalensis. Chemistry of natural compounds. 2008;44(3):361-362. https://doi.org/10.1007/s10600-008-9062-7 https://www.elibrary.ru/llndkl
31. Shevchuk O.M., Logvinenko L.A., Golubkina N.A., Molchanova A.V. Peculiaritires of development and antioxidant properties Scutellaria baicalensis Georgi. at introduction to the Southern Coast of Crimea. Woks of the State Nikit. Botan. Gard. 2018;146:128-134. (in Russ.) https://doi.org/10.25684/NBG.scbook.146.2018.19 https://www.elibrary.ru/tqasjg
32. http://www.pogodaiklimat.ru/ Дата обращения 20.02.2021.
33. Babaeva E.Y., Minyazeva Y.M., Logvinenko L.A., Molchanova A.V. Comparative characterization of the rhythm of seasonal development of Scutellaria baicalensis Georgi in the Non-Black Earth Zone and on the southern coast of Crimea. Siberian Journal of Life Sciences and Agriculture. 2023;15:(1):208-228. (in Russ.) https://www.elibrary.ru/mqlbkn
34. Groenbaek M., Tybirk E., Neugart S., Sundekilde U. K., Schreiner M., Kristensen H. L. Flavonoid Glycosides and Hydroxycinnamic Acid Derivatives in Baby Leaf Rapeseed From White and Yellow Flowering Cultivars With Repeated Harvest in a 2-Years Field Study. Frontiers in Plant Sciences. 2019;10:355. https://doi.org/10.3389/fpls.2019.00355
35. Research methods for the introduction of medicinal and essential oil plants / A. N. Tsitsilin, N. I. Kovalev, I. N. Korotkikh [et al.]. 2nd edition, revised and supplemented. - Moscow: Federal State Budgetary Scientific Institution ‘All-Russian Research Institute of Medicinal and Aromatic Plants’, 2022. - 64 с. - ISBN 978-5-87019-103-4. (in Russ.) https://www.elibrary.ru/elwoos
36. Maximova T.V., Nikulina I.N., Pakhomov V.P., Shkarina E.I., Chumakova Z.V., Arzamastsev A.P. Method for determination of antioxidant activity. Description of the invention for the patent of the Russian Federation. М. 2001. RU2170930 С1. (in Russ.)
37. Sapozhnikova E.V., Dorofeeva L.S. Determination of ascorbic acid content in colored plant extracts by iodometric method. Canning and vegetable industry. 1966;(5):29-31. (in Russ.)
38. Determination of sugars in vegetables, berries and fruits. Cyanide method of determination of sugars in plants. Practicum on agrochemistry, ed. by V.V. Kidin. Moscow, publishing house "Kolos". 2008;236-240. (in Russ.)
39. Misin V.M., Klimenko I.V., Zhuravleva T.S. On the suitability of gallic acid as a standard for an antioxidant formulation. Competence. 2014;7(118):46-51. (in Russ.) https://www.elibrary.ru/snhhyf
40. GOST R ISO 5479-2002 Statistical methods. Tests for departure of the probability distribution from the normal distribution М.: Standartinform. 2020. (in Russ.)
41. https://www.technologynetworks.com/informatics/articles/the-kruskal-wallis-test-370025
42. Glen S. "Duncan’s Multiple Range Test (MRT)" From Statistics How To. 2023 com: Elementary Statistics for the rest of us https://www.statisticshowto.com/duncans-multiple-range-test/
43. Chudnovskaya G. V. Study of biological features of Scutellaria baicalensis Georgi in Eastern Transbaikalia for the purpose of introduction. Achievements of science and technology AIC. 2013;9:43-46. (in Russ.) https://www.elibrary.ru/rcltrn
44. Egorova E.V. Typology of regions of the Non-Chernozem belt of Russia by agroclimatic resources. Proceedings of the International Academy of Agrarian Education. 2013;18:15-19. (in Russ.) https://www.elibrary.ru/rcmccj
45. Golubtsov V.A., Vanteeva Y.V., Voropay N.N. Effect of humidity on the stable carbon isotopic composition of soil organic matter in the Baikal region. Pochvovedenie. 2021;10:1182–1194. (in Russ.) https://doi.org/10.31857/S0032180X21100063 https://www.elibrary.ru/yiovqn
46. Chupakhina G.N. Ascorbic acid system of plants: Monograph. Kaliningr. un. Kaliningrad, 1997:120. (in Russ.)
47. Franceschi V. R., Tarlyn N. M. L-Ascorbic Acid Is Accumulated in Source Leaf Phloem and Transported to Sink Tissues in Plants. Plant Physiology. 2002;130:649–656.
48. Golubkina N.A., Sirota S.M., Pivovarov V.F., Yashin A.Y., Yashin Y.I. Biologically active compounds of vegetables. MOSCOW: VNIISSOK. 2010: 200. (in Russ.)
Review
For citations:
Molchanova A.V., Babaeva E.Yu. Some biochemical parameters of Scutellaria baicalensis Georgi herb at introduction into the Non-Chernozem belt of Russia. Vegetable crops of Russia. 2025;(3):61-69. https://doi.org/10.18619/2072-9146-2025-3-61-69