Search for pepper genotypes with high adaptive ability to low night temperatures based on the study of physiological characteristics
https://doi.org/10.18619/2072-9146-2025-3-10-15
Abstract
This article presents the results of a study on the adaptive properties of various pepper genotypes to low nighttime temperatures (LT) based on their physiological characteristics. It was found that LT slow down growth and reduce yield in most varieties; however, C22 and P08 exhibited resistance to cold stress. The genotypic dependence of plant response is confirmed by the lower sensitivity of varieties C17 and P06. Temperature stress reduced fruit size and contributed to the formation of seedless fruits, whereas in variety C12, the number of seeds increased. The obtained data highlight the importance of selecting resistant genotypes for breeding and successful pepper cultivation under low-temperature conditions.
About the Authors
Sh. N. RajametovUzbekistan
Sherzod N. Rajametov – PhD (Agriculture), Post Doctoral Researcher
Tashkent
M.-Ch. Cho
Korea, Republic of
Myeong-Cheoul Cho – PhD (Agriculture), Head of Laboratory
Wanju, 55365
References
1. Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 2000;(3):217–223.
2. Wang W.-X., Vinocur B., Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta. 2003;(218):1–14.
3. Toki, T.; Ogiwara, S.; Aoki, H. Effect of varying night temperature on the growth and yields in cucumber. Acta Hortic. 1978;(87):233–238
4. Horie T., de Wit C.T., Goudriaan J., Bensink J. A formal template for the development of cucumber in its vegetative stage (I, II and III). In Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen. Serie C: Biological and Medical Sciences; Wageningen University: Wageningen, The Netherlands. 1979;(82):433–479.
5. Nilwik H. Growth analysis of sweet pepper (Capsicum annuum L.) 1. The influence of irradiance and temperature under glasshouse conditions in winter. Ann. Bot. 1981;(48):129–136.
6. Ji L., Li P., Su Z., Li M., Guo S. Cold-tolerant introgression line construction and low-temperature stress response analysis for bell pepper. Plant Signal. Behav. 2020;(15):1773097. https://doi.org/10.1080/15592324.2020.1773097
7. O’sullivan J., Bouw W. Pepper seed treatment for low-temperature germination. Can. J. Plant Sci. 1984;(64):387–393.
8. Seo J.-U., Hwang J.-M., Oh S.-M. Effects of night temperature treatment of raising seedlings before transplanting on growth and development of pepper. J. Bio-Env. Con. 2006;(15):149–155.
9. Bhatt R., Srinivasa Rao N. Response of bell-pepper (Capsicum annuum) photosynthesis, growth, and flower and fruit setting to night temperature. Photosynthetica. 1994;(28):127–132.
10. Xiaoa F., Yang Z., Zhua L. Low temperature and weak light affect greenhouse tomato growth and fruit quality. J. Plant Sci. 2018;(6):16–24.
11. Picken A.J.F. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). J. Hortic. Sci. 1984;(59):1–13.
12. Barchi L., Lefebvre V., Sage-Palloix A.-M., Lanteri S., Palloix A. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor. Appl. Genet. 2009;(118):1157–1171.
13. Yarnes S.C., Ashrafi H., Reyes-Chin-Wo S., Hill T.A., Stoffel K.M., Van Deynze A. Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome. 2013;(56):61–74.
14. Mercado J., Mar Trigo M., Reid M., Valpuesta V., Quesada M. Effects of low temperature on pepper pollen morphology and fertility: Evidence of cold induced exine alterations. J. Hortic. Sci. 1997;(72):317–326.
15. Rajametov S.N., Lee K., Jeong H.-B., Cho M.-C., Nam C.-W., Yang E.-Y. Physiological Traits of Thirty-Five Tomato Accessions in Response to Low Temperature. Agriculture. 2021;(11):792. https://doi.org/10.3390/agriculture11080792
16. Yang S., Tang X.-F., Ma N.-N., Wang L.-Y., Meng Q.-W. Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco. J. Plant Physiol. 2011;(168):1804–1812.
17. Hou, X.-M., Zhang, H.-F., Liu, S.-Y., Wang, X.-K., Zhang, Y.- M., Meng, Y.-C., Luo, D., Chen, R.-G. The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers. Plant Sci. 2020;(291):110346.
18. Kong X.-M., Zhou Q., Zhou X., Wei B.-D., Ji S.-J. Transcription factor CaNAC1 regulates low-temperature-induced phospholipid degradation in green bell pepper. J. Exp. Bot. 2020;(71):1078–1091. https://doi.org/10.1093/jxb/erz463
19. Pressman E., Moshkovitch H., Rosenfeld K., Shaked R., Gamliel B., Aloni B. Influence of low night temperatures on sweet pepper flower quality and the effect of repeated pollinations, with viable pollen, on fruit setting. J. Hortic. Sci. Biotechnol. 1998;(73):131–136.
20. Cruz-Huerta N., Williamson, J.G., Darnell, R.L. Low night temperature increases ovary size in sweet pepper cultivars. HortScience. 2011;(46):396–401.
21. Goodstal F.J., Kohler G.R., Randall, L.B., Bloom, A.J., Clair, D.A.S. A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum). Theor. Appl. Genet. 2005;(111):898–905.
22. Rylski I. Effect of night temperature on shape and size of sweet pepper (Capsicum annuum L.). Amer. Soc. Hort. Sci. J. 1973;(98):149–152.
23. Patterson B.D., Reid M.S. Genetic and environmental influences on the expression of chilling injury. In Chilling Injury of Horticultural Crops; CRC Press: Boca Raton, FL, USA, 1990. pp. 87–112.
24. Issarakraisila M., Considine J. Effects of temperature on pollen viability in mango cv. ‘Kensington’. Ann. Bot. 1994;(73):231–240.
25. Bhutia K., Khanna V., Meetei T., Bhutia N. Effects of climate change on growth and development of chilli. Agrotechnology. 2018;7(2). https://doi.org/10.4172/2168-9881.1000180
26. Polowick P., Sawhney V. Temperature effects on male fertility and flower and fruit development in Capsicum annuum L. Sci. Hortic. 1985;(25):117–127.
27. Sawhney V.K., Shukla A. Male sterility in flowering plants: Are plant growth substances involved? Am. J. Bot. 1994;(81):1640–1647.
28. Zhigila D.A., AbdulRahaman A.A., Kolawole O.S., Oladele F.A. Fruit morphology as taxonomic features in five varieties of Capsicum annuum L. Solanaceae. J. Bot. 2014, 1–6.
29. Rylski I., Spigelman M. Effects of different diurnal temperature combinations on fruit set of sweet pepper. Sci. Hortic. 1982;(17):101–106.
30. Rylski I. Investigations on the Influence of Suboptimal Temperatures on the Flowering, Fruit Setting and Development of Sweet Pepper (Capsicum annum L.). Ph. D. Thesis, Hebrew University of Jerusalem, Jerusalem, Israel, 1971. pp. 1–96.
31. Rylski E., Kempler H. Fruit set of sweet pepper (Capsicum annuum L.) under plastic covers. HortScience. 1972;(7):422–423.
Review
For citations:
Rajametov Sh.N., Cho M. Search for pepper genotypes with high adaptive ability to low night temperatures based on the study of physiological characteristics. Vegetable crops of Russia. 2025;(3):10-15. (In Russ.) https://doi.org/10.18619/2072-9146-2025-3-10-15