The biochemical properties of new for Russia vegetable crops in relation to their non-traditional use
https://doi.org/10.18619/2072-9146-2025-2-54-60
Abstract
Relevance. New for Russia vegetable crops (vigna, kiwano, bitter melon and wax gourd), expanding their range and winning the attention of consumers, gradually increase their importance in the plant growing industry of the country. The study of the biochemical value of not only the fruits of these crops, but also previously non-traditional for food parts of the phytomass (leaves, wax on fruits) can not only more fully substantiate their consumer qualities, but also increase the efficiency of production and increase the coverage of food preferences of consumers of such products. The aim of the study is to consider from a nutritional value position the possibility of non-traditional use in Siberia of new for Russia vegetable crops as functional food.
Materials and Methods. Seven varieties of vigna, kiwano, bitter melon and wax gourd from the "Collection of living plants in open and closed ground" UNU No. USU 440534 of the Central Siberian Botanical Garden SB RAS were used. The plants were grown in an unheated film greenhouse (54°49'33" N 83°06'34" E) in soil based on high-moor peat from seeds reproduced earlier in the same conditions. Standard methods for analyzing the content of ascorbic acid and pectins were used. The content of macro- and microelements in fruits (mesocarp and exocarp) was determined by X-ray fluorescence analysis using synchrotron radiation (XRF SR) and other standard methods.
Results. In the exocarp of kiwano fruits, a significant, 2-10 times higher accumulation of Ca (18,246 μg/g) was noted, compared to other studied crops. A high content of Fe was found in the mesocarp and, especially, in the wax of wax gourd fruits − 141.6 and 473.2 μg/g, respectively. The amount of ascorbic acid in the leaves was 1.9-2.6 times higher than the same indicator in the fruits. The highest content of ascorbic acid was noted in the leaves of vigna accessions: Zinder − 98.35 mg% and cv. Yunnanskaya − 91.18 mg%.
About the Authors
Yu. V. FotevRussian Federation
Yu. V. Fotev – Cand. Sci. (Agriculture), Senior Researcher, Associate Professor
ID SCOPUS 57204771390
Researcher ID R-8406-2016
101, Zolotodolinskaya Str., Novosibirsk, 630090
160, Dobrolyubova Str., Novosibirsk, 630039
E. P. Khramova
Russian Federation
Elena P. Khramova – Dr. Sci. (Biology)
101, Zolotodolinskaya Str., Novosibirsk, 630090
A. F. Petrov
Russian Federation
Andrey F. Petrov – Dr. Sci. (Agriculture
160, Dobrolyubova Str., Novosibirsk, 630039
References
1. Fotev Y.V. On the methodology of introducing heat-loving vegetable plants in Siberia. Bulletin of NSAU (Novosibirsk State Agrarian University). 2018;(4):104-118. https://doi.org/10.31677/2072-6724-2018-49-4-104-118 https://elibrary.ru/yrjcix (in Russ.)
2. Kays S.J. Cultivated vegetables of the world: a multilingual onomasticon. Wageningen: Academic Pub.:2011. https://doi.org/10.3920/978-90-8686-720-2/
3. Mamedov M. I. Vegetable growing in the world: production of major vegetable crops, development trends for 1993-2013 according to FAO data. Vegetable crops of Russia ("Ovoshchi Rossii"). 2015;(2):3-9. https://doi.org/10.18619/2072-9146-2015-2-3-9 https://elibrary.ru/ucccif (in Russ.)
4. Silko E.A., Gumerov V.R., Karpov A.N., Tarasenko D.S. Dynamics of production and consumption of vegetable products in Russia. Economics of Agriculture of Russia. 2014;(9):44-51. (in Russ.) https://elibrary.ru/socvez
5. Soldatenko A.V., Pivovarov V.F., Pyshnaya O.N., Gurkina L.K., Tareeva M.M. Some results and prospects of vegetable crop breeding. News of Federal Scientific Vegetable Center (Izvestiya of FSVC). 2019; (1):27-38. https://doi.org/10.18619/2658-4832-2019-1-27-38. (in Russ.) https://elibrary.ru/advrll
6. Davis D.R., Epp M.D., Riordan H.D. Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J. Am. Coll. Nutr.2004;23(6):669-682. https://doi.org/10.1080/07315724.2004.10719409
7. Syso A.I. Heavy metals in the environment: scale and degree of threat to plants, animals and humans. In: Heavy metals in the environment. Proceedings of the II International School of Young Scientists. Novosibirsk: NGAU. 2017. P. 224-241. https://elibrary.ru/zuvhqz (in Russ.)
8. Drozdov V.N. Rational compensation for deficiency of vitamins and microelements. General medicine. 2009;(3):34-40. URL: https://cyberleninka.ru/article/n/ratsionalnoe-vozmeschenie-defitsita-vitaminov-imikroelementov (date of access: 08.01.2025). (in Russ.)
9. Fotev Y.V., Shevchuk O.M., Syso A.I. Study of variability of elemental composition of seeds of Vigna unguiculata (L.) Walp. accessions in the south of Western Siberia and in Crimea. Chemistry of plant raw materials. 2021;(2):217-226. https://doi.org/10.14258/jcprm.2021027543. (in Russ.) https://www.elibrary.ru/pztznr
10. Radzevičius A., Karklelienė R., Bobinas C., Viskelis P. Nutrition quality of different tomato cultivars. Zemdirbyste. 2009;96(3):P.67-75.
11. Fotev Y., Artemyeva A. The concept of introduction and breeding of non-traditional vegetable plants in Siberia. BIO Web of Conferences. International Conferences “Northern Asia plant diversity: current trends in research and conservation”, Novosibirsk. 6-12.09.2021. https://doi.org/10.1051/bioconf/20213800034
12. Hall N., Nagy S., Barry R. Leaves for food: protein and amino acid contents of leaves from 23 tropical and subtropical plants. Proceedings of the annual meeting: ub 15. 1976;88:486-490.
13. Mekonnen, T.W., Gerrano, A.S., Mbuma, N.W., Labuschagne, M.T. Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: progress, opportunities, and challenges. Plants. 2022;11:1583. https://doi.org/10.3390/plants11121583
14. Bester S., Condy G. Cucumis metuliferus E. Mey. ex Naudin. Flower Plants Afr. 2013;63:56–64.
15. Usman J.G., Sodipo O.A., Kwaghe A., Sandabe U.K. Uses of Cucumis metuliferus: a review. Cancer Biol Ther. 2015;5(1):24-34.
16. Vieira E., Grosso C., Rodrigues F., Moreira M., Fernandes V., Delerue-Matos C. Bioactive compounds of horned melon (Cucumis metuliferus E. Meyer ex Naudin). In: Bioactive compounds in underutilized vegetables and legumes, Reference Series in Phytochemistry. Eds.: H.N. Murthy, K.Y. Paek. Switzerland: Springer Nature AG. 2021. DOI: 10.1007/978-3-030-57415-4_21.
17. Šeregelj V., Šovljanski O., Tumbas Šaponjac T.V., Vulić J., Ćetković G., Markov S., Čanadanović-Brunet J. Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin) − current knowledge on its phytochemicals, biological benefits, and potential applications. Processes. 2022;10:94. https://doi.org/10.3390/pr10010094.
18. Islam M.T., Quispe C, El-Kersh D.M., Shill M.C., Bhardwaj K., Bhardwaj P., Sharifi-Rad J., Martorell M., Hossain R., Al-Harrasi A., Al-Rawahi A., Butnariu M., Rotariu L.S., Suleria H., Taheri Y., Docea A.O., Calina D., Cho W.C. A Literature-Based Update on Benincasa hispida (Thunb.) Cogn.: Traditional Uses, Nutraceutical, and Phytopharmacological Profiles. Oxid Med Cell Longev. 2021;10:6349041. https://doi.org/10.1155/2021/6349041
19. Zaini N.A.M., Anwar F., Hamid A.A., Saari N., Kundur [Benincasa hispida (Thunb.) Cogn.]: a potential source for valuable nutrients and functional foods. Food Res. Int. 2011;44:2368–2376.
20. Singh S., Gohil K.J., Singh M.P. Pharmacological update on Benincasa hispida (Thunb.): A review. Pharmacological Research - Modern Chinese Medicine. 2024;100478. https://doi.org/10.1016/j.prmcm.2024.100478
21. Fotev Y.V., Belousova V.P. Benincasa. In: Introduction of nontraditional fruit, berry and vegetable plants in Western Siberia. Novosibirsk: Geo Publishing House. 2013: 220-233. (in Russ.)
22. Wollenweber E., Gaydou E.M. A rare triterpene as major constituent of the "wax" on fruits of Benincasa hispida. Indian drugs. 1991;28(10):1-3.
23. Burlyaeva M.O., Gurkina M.V., Chebukin P.A., Kiseleva N.A. International classifier of species of the genus Vigna Savy. St. Petersburg: VIR. 2016. (in Russ.)
24. Trunova V.A., Zvereva V.V. Method of X-ray fluorescence analysis using synchrotron radiation: objects of study. Journal of Structural Chemistry. 2016;57(7):1401-1407. https://doi.org/10.15372/JSC20160705 (in Russ.) https://www.elibrary.ru/wzviml
25. Ermakov A.I., Arasimovich V.V., Yarosh N.P., et al. Methods of biochemical study of plants. Leningrad: Agropromizdat. 1987. (in Russ.)
26. Kriventsov V.I. Carbazole-free method of quantitative spectrophotometric determination of pectin substances. Bulletin of the State Nikitsky Botanical Gardens. 1989;109:128-137. (in Russ.)
27. Aziziaram Z., Cheghamirza K., Zarei1 L., Beheshti-Alagha A. Chemical and morphological characteristics of common bean seed and evaluating genetic advance in commercial classes. Cellular and Molecular Biology. 2021;67(6):89-99. http://dx.doi.org/10.14715/cmb/2021.67.6.13
28. Marr K., Xia Y.-M., Bhattarai N. Allozymic, Morphological, Phenological, Linguistic, Plant Use, and Nutritional Data of Benincasa hispida (Cucurbitaceae). Economic Botany. 2007;61:44-59. https://doi.org/10.1663/0013-0001
29. Kruglov D.S. Individual variability of the elemental composition of the aboveground part of Pulmonaria mollis Hornem. Chemistry of plant raw materials. 2010;1:131-136. (in Russ.) https://www.elibrary.ru/lrhjsh
30. Barashkov V.A., Koposova T.S., Belykh A.I., Lukina S.F., Morozova L.V., Sokolova L.V. Chemical elements in the human body: reference materials. Arkhangelsk: Publishing house of Pomor State University named after M.V. Lomonosov. 2001. (in Russ.).
Review
For citations:
Fotev Yu.V., Khramova E.P., Petrov A.F. The biochemical properties of new for Russia vegetable crops in relation to their non-traditional use. Vegetable crops of Russia. 2025;(2):54-60. (In Russ.) https://doi.org/10.18619/2072-9146-2025-2-54-60