Определение видов деревьев, устойчивых к кислой почве
https://doi.org/10.18619/2072-9146-2024-2-71-78
Аннотация
Раньше подповерхностную кислотность почвы корректировали путем внесения извести, гипса и кислых почвоустойчивых культур. Однако их эффективность в снижении кислотности почв ограничена.
Таким образом, цель данного обзора – отобрать породы деревьев, которые легко преодолевают подобные проблемы.
Были использованы источники Scopus, Science Direct, Google Scholar, африканские онлайн-журналы и базы данных поисковых систем Google. Всего выявлено 60 видов деревьев, устойчивых к кислым почвам. Acacia auriculiformis, Acacia crassicarpa, Arbutus unedo L., Casuarina junghuhniana и Erythrina abyssinica относились к числу чрезвычайно устойчивых к кислотности почв видов деревьев. В то время как Acacia cincinnata, Acacia mangium, Pinus patula, Albizia saman, Citrus x paradisi и Cassia reticulata принадлежали к видам деревьев, устойчивым к сильно кислым почвам. Как правило, для успеха корректирующих работ следует учитывать кислотоустойчивость вида и совместимость с местом посадки. Увеличение и закладка крупномасштабных плантаций плодовых деревьев должна осуществляться с учетом оценки их относительной роли как улучшителей кислой почвы. Таким образом, производство стабильных продуктов питания и восстановление кислой почвы достигается за счет выращивания устойчивых к стрессу плодовых деревьев. В будущем должны быть проведены исследования крупномасштабных плантаций, интродукции и сравнительная оценка их уровня способности улучшать почву.
Ключевые слова
Об авторе
М. Т. АсмареЭфиопия
Мелкаму Терефе Асмаре, научный сотрудник
Аддис-Абеба
Список литературы
1. Laekemariam F., Kibret K. Extent, distribution, and causes of soil acidity under subsistence farming system and lime recommendation: The case in Wolaita, Southern Ethiopia. Applied and Environmental Soil Science. 2021(15):1-9. doi: 10.1155/2021/5556563
2. Alvarez R., Gimenez A., Pagnanini F., Recondo V., Gangi D., Caffaro M., et al. Soil acidity in the Argentine Pampas: Effects of land use and management. Soil and Tillage Research. 2020;(196):104434. doi: 10.1016/j.still.2019.104434
3. Fageria N.K., Baligar V.C. Fertility management of tropical acid soils for sustainable crop production. Handbook of soil acidity. 2003. p. 359-385. URL: https://www.taylorfrancis.com/chapters/edit/10.1201/9780203912317-15/fertility-management-tropical-acid-soil-sustainable-crop-production-nand-fageria-virupax-baligar
4. SumnerM.E., NobleA.D. Soil acidification: the world story. Handbook of soil acidity. New York: Marcel Dekker. 2003. p. 1-28. eBook ISBN 9780429223099.
5. Agegnehu G., Yirga C., Erkossa T. Soil acidity management. Ethiopian Institute of Agricultural Research (EIAR). Addis Ababa, Ethiopia, 2019. 56 p. ISBN: 9789994466597.
6. Desta G., Kassawmar T., Tadesse M., Zeleke G. Extent and distribution of surface soil acidity in the rainfed areas of Ethiopia. Land Degradation & Development. 2021;32(18):5348-5359. doi: 10.22541/au.162626048.80478554/v1
7. Calegari A., Tiecher T., Hargrove W.L., Ralisch R., Tessier D., et al., Long-term effect of different soil management systems and winter crops on soil acidity and vertical distribution of nutrients in a Brazilian Oxisol. Soil and Tillage Research. 2013;(133):32–39. doi: 10.1016/j.still.2013.05.009
8. Thakuria D., Hazarika S., Krishnappa R. Soil acidity and management options. Indian Journal of Fertilisers. 2016;12(12):40-56.
9. Yirga C., Erkossa T., Agegnehu G. Soil acidity management. Ethiopian Institute of Agricultural Research, 2019.
10. Pagani A., Mallarino A.P. Soil pH and crop grain yield as affected by the source and rate of lime. Soil Science Society of America Journal. 2012;76(5):1877-1886. doi: 10.2136/sssaj2012.0119
11. Barber S.A. Liming materials and practices. In: Soil Acidity and Liming. 2015, Wiley. P. 171-209.
12. Condon J., Burns H., Li G. The extent, significance and amelioration of subsurface acidity in southern New South Wales, Australia. Soil Research. 2020;59(1):1-11. doi: 10.1071/SR20079
13. Li G.D., Conyers M.K., Helyar K.R., Lisle Ch.J., et al. Long-term surface application of lime ameliorates subsurface soil acidity in the mixed farming zone of south-eastern Australia. Geoderma. 2019; 338(3):236-246. doi: 10.1016/j.geoderma.2018.12.003
14. Azam G., Gazey C. Slow movement of alkali from surface-applied lime warrants the introduction of strategic tillage for rapid amelioration of subsurface acidity in south-western Australia. Soil Research. 2020;59(1):97-106. doi: 10.1071/SR19329
15. Nair K., Anil Kumar K.S., Lalitha M., Shivanand, Ramesh Kumar S.C., Srinivas S., et al. Surface soil and subsoil acidity in natural and managed land-use systems in the humid tropics of Peninsular India. Current Science. 2019;116(7):1201-1211. doi: 10.18520/cs/v116/i7/1201-1211
16. Abure T. Status of Soil Acidity under Different Land Use Types and Soil Depths: The Case of Hojje Watershed of Gomibora District, Hadiya Zone, Southern Ethiopia. Applied and Environmental Soil Science. 2022;(6):1-13. doi: 10.1155/2022/7060766
17. Sanchez P.A., Logan T.J. Myths and science about the chemistry and fertility of soils in the Tropics. In: Lal R., Sanchez P.A., Eds. Myths and Science of Soils of the Tropics. Soil Science Society of America. Special Publication No. 29, SSSA-ASA, Madison, 1992. 35-46 p.
18. Fageria N., Baligar V. Improving nutrient use efficiency of annual crops in Brazilian acid soils for sustainable crop production. Communications in Soil Science and Plant Analysis. 2001;32(7-8):1303-1319. doi: 10.1081/CSS-100104114
19. Pérez L., Bugja R., Lorenschat Ju., Brenner M., Curtis J., Hoelzmann P., et al. Aquatic ecosystems of the Yucatan peninsula (Mexico), Belize, and Guatemala. Hydrobiologia. 2011;661(1):407-433. doi: 10.1007/s10750-010-0552-9
20. Birch C., Sparrow L., Barry Doyle R., BonneyL.B., et al. Implications of soil resources for vegetable crop options and agronomic practicefor sustainable production – a comparison of Eastern Highlands and Central Provinces, Papua New Guinea. in 19<i>th</i> World Congress of Soil Science. 2010.
21. Juo A., Wilding L. Soils of the lowland forests of West and Central Africa. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences. 1996;104:15-29.
22. Moreno J., Espinosa J., Bernal G.Soils from the Highlands. The Soils of Ecuador. 2018. p. 79-111. doi: 10.1007/978-3-319-25319-0
23. Delmelle P., Opfergelt S., Cornelis J.-T., Ping C.-L. Volcanic Soils. The Encyclopedia of Volcanoes, 2015. P. 1253–1264. doi: 10.1016/b978-0-12-385938-9.00072-9
24. Funakawa S., Kosaki T. Soil Fertility Status in Equatorial Africa: A Comparison of the Great Rift Valley Regions and Central/Western Africa. Soils, Ecosystem Processes, and Agricultural Development: Tropical Asia and Sub-Saharan Africa, 2017. p. 85-101. doi: 10.1007/978-4-431-56484-3_5
25. Espinosa J., Izquierdo J.M. The soils of Ecuador. Vol. 1. 2018: Springer. doi: 10.1007/978-3-319-25319-0. ISBN: 978-3-319-25317-6.
26. Panda S.K., Baluska F., Matsumoto H. Aluminum stress signaling in plants. Plant Signaling & Behavior. 2009;4(7):592-7. doi: 10.4161/psb.4.7.8903
27. Roem W.J., Berendse F. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biological Conservation. 2000;92(2):151-161. doi: 10.1016/S0006-3207(99)00049-X
28. Palpurina S., Wagner V., von Wehrden H., Hájek M., et al., The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography. 2017;26(4):425-434. doi: 10.1111/geb.12549
29. Liliane T.N., Mutengwa C.S .Factors affecting yield of crops. In book: Agronomy - Climate Change and Food Security. 2020. p. 9. doi: 10.5772/intechopen.90672
30. Reddy B.V.S., Reddy P. Sanjana, Bidinger F., Blümmel M. Crop management factors influencing yield and quality of crop residues. Field Crops Research. 2003;84(1):57-77. doi: 10.1016/S0378-4290(03)00141-2
31. Fan F., Van der Werf W., Makowski D., et al. Cover crops promote primary crop yield in China: A meta-regression of factors affecting yield gain. Field Crops Research. September 2021;271(79):108237. doi: 10.1016/j.fcr.2021.108237
32. Ngoune T.L., Mutengwa C.S., et al. Breeding maize for tolerance to acidic soils : A review. Agronomy, 2018;8(6):84. doi: 10.3390/agronomy8060084
33. Hayati P., Sutoyo S., Syarif A., Prasetyo T. Performance of maize single-cross hybrids evaluated on acidic soils. International Journal on Advanced Science, Engineering and Information Technology. 2014;4(3):154-157. doi: 10.18517/IJASEIT.4.3.390
34. Daba N.A., Li D., Huang J., Han T., et al. Long-term fertilization and lime-induced soil pH changes affect nitrogen use efficiency and grain yields in acidic soil under wheat-maize rotation. Agronomy. 2021;11(10):2069. doi: 10.3390/agronomy11102069
35. Bekele Sima A., et al. Evaluation of soil acidity and effects of amendments on selected soil properties and yield of maize (Zea mays l.) In Ebantu district, Western Highlands of Ethiopia. 2018, Haramaya university.
36. Fageria N.K., Nascente A.S. Management of soil acidity of South American soils for sustainable crop production. Advances in agronomy. 2014;(128):221-275. doi: 10.1016/B978-0-12-802139-2.00006-8
37. Anderson G.C., Pathan Sh., Easton J., et al. Short-and long-term effects of lime and gypsum applications on acid soils in a water-limited environment: 2. soil chemical properties. Agronomy. 2020;10(12):1987. doi: 10.3390/agronomy10121987
38. Poile G., Oates A., Moroni S., Lowrie R., Conyers M., Swan T., et al., Canola and subsoil constraints: Technical Bulletin. 2012.
39. Li G. Innovative approaches to subsoil liming and management. Grains Research Update, 2020. P. 38.
40. Oates K.M., Caldwell A. Use of by-product gypsum to alleviate soil acidity. Soil Science Society of America Journal. 1985;49(4):915-918. doi: 10.2136/sssaj1985.03615995004900040025x
41. Takahashi T., Ikeda Y., et al. Efficiency of gypsum application to acid Andosols estimated using aluminum release rates and plant root growth. Soil Science and Plant Nutrition. 2006;52(5):584-592. doi: 10.1111/j.1747-0765.2006.00071.x
42. Flores Clavo R., Valladolid-Suyón E., Reinoza-Farroñan K., Ortega C.A., et al. Rhizobacterial Isolates from Prosopis limensis Promote the Growth of Raphanus sativus L. Under Salt Stress. Current Microbiology. 2023;80(8):269. doi: 10.1007/s00284-023-03379-w
43. Nyström T. To be or not to be: the ultimate decision of the growth-arrested bacterial cell. FEMS microbiology reviews. 1998;21(4):283-290.
44. de Zelicourt A., Al-Yousif M., Hirt H. Rhizosphere Microbes as Essential Partners for Plant Stress Tolerance. Molecular Plant. 2013;6(2):242-245. doi: 10.1093/mp/sst028
45. Egamberdieva D., Kucharova Z. Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology and fertility of soils. 2009;(45):563-571. doi: 10.1007/s00374-009-0366-y
46. Muleta D. Legume response to arbuscular mycorrhizal fungi inoculation in sustainable agriculture. In book: Microbes for Legume Improvement (pp.227-260). October 2017. doi: 10.1007/978-3-319-59174-2_10
47. Chesworth W. Encyclopedia of soil science. 2007. Springer Science & Business Media. doi: 10.1007/978-1-4020-3995-9_323
48. Pham T.G., Chau T.T.M., Nguyen H.T. et al. Land Evaluation for Acacia (Acacia mangium × Acacia auriculiformis) Plantations in the Mountainous Regions of Central Vietnam. Land. 2022;11(12): 2184.
49. Boland D., et al., The habitat of Acacia auriculiformis and probable factors associated with its distribution. Journal of Tropical Forest Science. 1990. p. 159-180.
50. Hossain M.L., Huda S.M., Hossain M.K. Effects of industrial and residential sludge on seed germination and growth parameters of Acacia auriculiformis seedlings. Journal of Forestry Research. 2009;20(4):331-336. doi: 10.1007/s11676-009-0056-5
51. Cole T.G., Yost R.S., Kablan R., Olsen T. et al. Growth potential of twelve Acacia species on acid soils in Hawaii. Forest Ecology and Management. 1996;80(1-3):175-186. doi: 10.1016/0378-1127(95)03610-5
52. Orwa C., Mutua A., Kindt R., Jamnadass R., et al. Agroforestree Database: a tree reference and selection guide version 4.0. 2009. URL: https://www.researchgate.net/publication/258996453_Agroforestree_Database_A_Tree_Reference_and_Selection_Guide_version_40.
53. Hanchor U., Maelim S., Suanpaga W., Park J.-M. et al. Growth Performance and Heritability Estimation of in a Progeny Trial in eastern Thailand. Silvae Genetica. 2016;65(2):58-64. doi: 10.1515/sg-2016-0017
54. Elevitch C.R. "Acacia koa (koa) and Acacia koaia (koaiʻa)".In Book Traditional Trees of Pacific Islands Their Culture, Environment and Use. The Traditional Tree Initiative. 2006. ISBN: 9780970254450.
55. Hegde M., Palanisamy K., Yi J.S. Acacia mangium Willd. - A fast growing tree for tropical plantation. Journal of Forest and Environmental Science. 2013;29(1):1-14. doi: 10.7747/JFS.2013.29.1.1
56. Halinda C. Performance of Acacia mangium Willd. and Leucaena leucocephala (Lam) de Wit. at Niah forest reserve, Serawak. Nitrogen Fixing Tree Res Rep. 1988;6:15-17.
57. Doran J.C., Turnbull J.W. Australian trees and shrubs: species for land rehabilitation and farm planting . ACIAR Monograph No.24. Canberra, Australia, ACIAR. 384 p. 1997, Australia: CGIAR.
58. Weber-Blaschke G., Heitz R., Blaschke M.,AmmerC. Growth and nutrition of young European ash (Fraxinus excelsior L.) and sycamore maple (Acer pseudoplatanus L.) on sites with different nutrient and water statuses. European Journal of Forest Research.2008;(127):465-479. doi: 10.1007/s10342-008-0230-x
59. Hein S., Collet C., Ammer C., Le Goff N., Skovsgaard P.J., Savill P. A review of growth and stand dynamics of Acer pseudoplatanus L. in Europe: implications for silviculture. Forestry. 2009;82(4):361-385. doi: 10.1093/forestry/cpn043
60. Caudullo G., de Rigo D. Acer platanoides in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species. Luxembourg: Publ. Off. EU, 2016. p. e019159.
61. Acer pseudoplatanus (sycamore). Publication: CABI Compendium. 21 November 2019. doi: 10.1079/cabicompendium.2884
62. Annona squamosa. Iplantaz, Useful plants for Warm climate. https://www.iplantz.com/plant/107/annona-squamosa/.
63. Celikel G., Demirsoy L., Demirsoy H. The strawberry tree (Arbutus unedo L.) selection in Turkey. Scientia Horticulturae. 2008;118(2):115-119. doi: 10.1016/j.scienta.2008.05.028
64. Fonseca D.F., Salvador Â.C., Santos S.A.O., Vilela C., et al. Bioactive phytochemicals from wild Arbutus unedo L. berries from different locations in Portugal: Quantification of lipophilic components. International journal of molecular sciences. 2015;16(6):14194-14209. doi: 10.3390/ijms160614194
65. Ruiz-Rodríguez B.-M., Morales P., Fernández-Ruiz V., Sánchez-Mata M.-C., et al. Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Research International. 2011;44(5):1244-1253. doi: 10.1016/j.foodres.2010.11.015
66. Moualek I., Aiche G.I., Guechaoui N.M., Lahcene S., HoualiK. Antioxidant and anti-inflammatory activities of Arbutus unedo aqueous extract. Asian pacific journal of tropical biomedicine. 2016;6(11):937-944. doi: 10.1016/j.apjtb.2016.09.002
67. Lemmens R.H.M.J., Soerianegara I., Wong W.C. Reviewed Work: Plant Resources of South-East Asia. No. 5(2). Timber Trees: Minor Commercial. PROSEA Foundation Indonesia. Bogor, 1995. doi: 10.2307/1224176
68. Stoney C. Azadirachta indica (neem): a versatile tree for the tropics and subtropics’, Fact Sheet publication of ‘forest, farm, and community tree network’(FACT Net), Arkansas, United States. 1997.
69. Perala D.A., Alm A.A. Reproductive ecology of birch : A review. Forest Ecology and Management. 1990;32(1):1-38. doi: 10.1016/0378-1127(90)90104-j
70. Sajdak H.L.H.W.M., Wojtan M.K.R. The chemical composition of silver birch (Betula pendula Roth.) wood in Poland depending on forest stand location and forest habitat type. Cellulose. 2019:26(3): 3047-3067. doi: 10.1007/s10570-019-02306-2
71. Duguma B., Mollet M. Early growth of Calliandracalothyrsus (Meissner) provenances in the acid soils of southern Cameroon. Agroforestry systems. 1998;40:283-296.
72. Azani N., Babineau M., Bailey C.D., Banks H., Barbosa A.R., et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon. 2017;66(1):44-77. doi: 10.12705/661.3
73. Cuenca G., Herrera R., Medina E. Aluminium tolerance in trees of a tropical cloud forest. Plant and Soil. 1990;125(2):169-175. doi: 10.1007/BF00010654
74. Duke J.A. Saccharum officinarum L. Handbook of Energy Crops.(Available from https://www.growables.org/informationVeg/SugarCEnergyC.htm
75. Shai L.J., Masoko P., Mokgotho M.P., Magano S.R., Mogale A.M., Boaduo N., Eloff J.N. Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. South African Journal of Botany. 2010;76(3):465-470. doi: 10.1016/j.sajb.2010.03.002
76. Szott L., Palm C., Sanchez P. Agroforestry in acid soils of the humid tropics. Advances in Agronomy. 1991;45:275-301.
77. Crane J. Key Lime Growing in the Florida Home Landscape. 2015.
78. Srivastava A.K., Singh S. Citrus decline: Soil fertility and plant nutrition. Journal of Plant Nutrition. 2009;32(2):197-245. doi: 10.1080/01904160802592706
79. Muhammad A.J., et al. Effect of different sources of sulfur on soil properties and physio-chemical characteristics of Citrus limon L. (cv. lisbon) grown on alkaline soil in fata. Sarhad Journal of Agriculture. 2007;23(1):95.
80. Ugale C.V., Warghat A.R., Phate P.V., Wagh P. Callus Induction Studies In Psophocarpus Tetragonolobus (L.). International Journal of Pharmaceutical Sciences Review and Research.November – December 2011;11(2):30-32. https://www.globalresearchonline.net/journalcontents/volume11issue2/Article-005.pdf
81. Delonix regia. Flame tree. Bonsai care and maintenance. https://www.bonsaiempire.com/tree-species/flame-tree#:~:text=The%20flame%20tree%20tolerates%20a,so%20avoid%20very%20calcareous%20water.
82. Drought and Heat Tolerant Gardening. Growing Dodonaeaviscosa: Hopbush. https://gardenoracle.com/images/dodonaea-viscosa.html
83. Tsegaye A., Westphal E. Ensete ventricosum (Welw.) Cheesman. Record from PROTA4U. In: Oyen L.P.A, Lemmens R.H.M.J. (Editors). PROTA (Plant Resources of Tropical Africa.Ressourcesvégétales de l’Afriquetropicale), Wageningen, Netherlands.1992.
84. PROTA, Plant Resources of Tropical Africa. http://www.prota.org/
85. Ljungström M., Stjernquist I. Factors toxic to beech (Fagus sylvatica L.) seedlings in acid soils. Plant and soil. 1993;(157):19-29.
86. Walthert L., Graf Pannatier E., Meier E.S. Shortage of nutrients and excess of toxic elements in soils limit the distribution of soil-sensitive tree species in temperate forests. Forest Ecology and Management. 2013;297(6):94-107. doi: 10.1016/j.foreco.2013.02.008
87. Augusto L., Rangera J., Binkleyb D., Rothec A. Impact of several common tree species of European temperate forests on soil fertility. Annals of forest science. 2002;59(3):233-253. doi: 10.1051/forest:2002020
88. Ercisli S., Tosun M., Karlidag H., Dzubur A., Hadziabulic S., Aliman Y. Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods for Human Nutrition. 2012;67(3):271-276. doi: 10.1007/s11130-012-0292-2
89. Beck P., Caudullo G., TinnerW.et al. Fraxinus excelsior in Europe: distribution, habitat, usage and threats. In book: European Atlas of Forest Tree Species. Publisher: Publication Office of the European Union, Luxembourg, 2016.
90. Lim T. Gliricidia sepium. In Edible Medicinal And Non-Medicinal Plants: Volume 7, Flowers. 2013, Springer. P. 806-816. ISBN: 978-94-007-7394-3. doi: 10.1007/978-94-007-7395-0
91. Ota H.O., Aja D., Okolo C.C., Oranu C.O. Influence of tree plantation Gmelinaarborea and Gliricidia sepium on soil physico-chemical properties in Abakaliki, Southeast, Nigeria. ActaChemica Malaysia (ACMY). 2018;2(2):23-28. URL: https://www.researchgate.net/publication/332031342_INFLUENCE_OF_TREE_PLANTATION_GMELINA_ARBOREA_AND_GLIRICIDIA_SEPIUM_ON_SOIL_PHYSICO-CHEMICAL_PROPERTIES_IN_ABAKALIKI_SOUTHEAST_NIGERIA
92. Keerthanan S., Rajapaksha S.M., Trakal L., Vithanage M. Caffeine removal by Gliricidiasepium biochar: Influence of pyrolysis temperature and physicochemical properties. Environmental Research.2020;(189):109865. doi: 10.1016/j.envres.2020.109865
93. Antia B.S., Ita B.N., Udo U.E. Nutrient composition and in vitro antioxidant properties of Harungana madagascariensis stembark extracts. Journal of Medicinal Food. 2015;18(5):609-614. doi: 10.1089/jmf.2014.0084
94. Happi G.M., Tiani G.L.M., Gbetnkom Y.M.B., Hidayat H., Green I.R., et al. Phytochemistry and pharmacology of Harungana madagascariensis: mini review. Phytochemistry Letters. 2020;(35):103-112. doi: 10.1016/j.phytol.2019.11.015
95. Lim T.K. Inga edulis. In: Edible Medicinal And Non-Medicinal Plants: Volume 2, Fruits, 2012. p. 715-719. doi: 10.1007/978-94-007-1764-0
96. Browder J.F., Niemiera A.X., Harris J.R., Wright R.D. Growth of container-grown pin oak and Japanese maple as influenced by sulfur and sulfated micronutrients. HortScience. 2005;40(5):1521-1523. doi: 10.21273/HORTSCI.40.5.1521
97. Moore K.A., Bradley L.K. North Carolina Extension Gardener Handbook Extention Gardener Plant Text Book. 2018. 728 p. ISBN: 1469641259. https://plants.ces.ncsu.edu/plants/juniperus-horizontalis-blue-rug/#:~:text=It%20tolerates%20a%20range%20of,PH%20of%205%20to%208.
98. Gilman E.F., Watson D.G. Liquidambar styraciflua Sweetgum. Fact Sheet ST-358, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, 1993.
99. Woody plant Database. https://woodyplants.cals.cornell.edu/plant/138
100. Han Q.-Y., Liu F., Li M., Wang K.-L., Ni Y.-Y. Comparison of biochemical properties of membrane-bound and soluble polyphenol oxidase from Granny Smith apple (Malus×domesticaBorkh.). Food chemistry. 2019;(289):657-663. doi: 10.1016/j.foodchem.2019.02.064
101. Pirmoradian M., Naseri L., Abdollahi H., Shahabi A.A. Ferric chelate reductase activity as screening index for selecting iron chlorosis resistance of Apple rootstocks. Iranian Journal of Horticultural Science. 2017;48(3):655-668. doi: 10.22059/IJHS.2017.204846.997
102. Bally I.S. Mangifera indica (mango). 2006. P.1-25. https://www.growables.org/information/TropicalFruit/documents/MangoAgroforestry.pdf
103. Anjulo A., Mulatu Y., Kidane B., Reza S., Getahun A., Mulat S., Abere M., Teshome U. Show moreet al. Oxytenanthera abyssinica A. Rich. Munro species-site suitability matching in Ethiopia. Advances in Bamboo Science. 2022;1(1):100001. URL: https://www.sciencedirect.com/science/article/pii/S2773139122000015
104. Mulyadi M., Ruhiyat D., Aipassa M.I., Hardwinanto S. The growth of Paraserianthes falcataria at three different plant ages and soil thickness classes on reclamation sites of post-coal mining areas in East Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity. 2022;23(4):1930-1937. doi: 10.13057/biodiv/d230427
105. Ravishankar H., Sane A. Avocado (Persea americana Mills.). 2019-01-01. http://krishi.icar.gov.in/jspui/handle/123456789/69423.
106. Rezende A.C.B., Crucello J., Moreira R.C., Silva B.S., Sant'Ana A.S. Incidence and growth of Salmonella enterica on the peel and pulp of avocado (Persea americana) and custard apple (Annona squamosa). International journal of food microbiology. 2016;(235):10-16. doi: 10.1016/j.ijfoodmicro.2016.06.034
107. Marais L., Kotzé J. Effect of soil pH on mycorrhizae development in Pinus patula Schlechtet Cham. in South Africa. South African Forestry Journal. 1978;106(1):12-15. doi: 10.1080/20702620.1978.10433489
108. Dames J.F., Scholes M.C., Straker C. Nutrient cycling in a Pinuspatula plantation in the Mpumalanga Province, South Africa. Applied soil ecology. 2002;20(3):211-226. doi: 10.1016/S0929-1393(02)00028-8
109. Wendel G.W., Smit H.C. Pinus strobus L. Eastern White Pine. In: Silvics of North America. 1. Conifers. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC. 1990. https://srs.fs.usda.gov/pubs/misc/ag_654/volume_1/silvics_vol1.pdf
110. Iplantaz. Useful plants for warm climates. Pithecellobium dulce. https://www.iplantz.com/plant/1244/pithecellobium-dulce/
111. Garro A., Gasull E. Characterization of polyphenoloxidase from 2 peach (Prunus persica L.) varieties grown in Argentina. Food Science and Biotechnology. 2010;(19):627-632. doi: 10.1007/s10068-010-0088-9
112. Rapenau G., Van Loey A., Smout C., Hendrickx M. Biochemical characterization and process stability of polyphenoloxidase extracted from Victoria grape (Vitis vinifera ssp. sativa). Food Chem. 2004;94(2):253-261. doi: 10.1016/j.foodchem.2004.10.058
113. Rinallo C., Modi G. Fruit yield of field-grown pear Pyrus communis (L) exposed to different levels of rain acidity in tuscany. Journal of the Science of Food and Agriculture. 1995;68(1):43-50. doi: 10.1002/jsfa.2740680108
114. Plants For A Future. Punica granatum L. https://pfaf.org/User/plant.aspx?latinname=Punica+granatum
115. Watson G.W., Himelick E.B. Effects of soil pH, root density, and tree growth regulator treatments on pin oak chlorosis. Journal of Arboriculture. 2004;30(3):172-178. doi: 10.48044/jauf.2004.021
116. Ross A.B., David M.P. Sensitivity of the messina (Melilotus siculus) – Sinorhizobium medicae symbiosis to low pH. Crop and Pasture Science. 2021;72(9):754-761. doi: 10.1071/CP20292
117. Reeve W.G., Bräu L.t, Castelli J., Garau G., Sohlenkamp C., Geiger O., Dilworth M.J., et al. The Sinorhizobium medicae WSM419 lpiA gene is transcriptionally activated by FsrR and required to enhance survival in lethal acid conditions. Microbiology. 2006;152(10):3049-3059. doi: 10.1099/mic.0.28764-0
118. Reeve W.G., Tiwari R.P., Guerreiro N., Stubbs J., Dilworth M.J., Glenn A.R., et al. Probing for pH-regulated proteins in Sinorhizobium medicae using proteomic analysis. Microbial Physiology. 2004;7(3):140-147. doi: 10.1159/000078657
119. Liu, W., Thummasuwan S., Sehgal S.K., Chouvarine P., Peterson D.G. Characterization of the genome of bald cypress. BMC genomics. 2011;(12):553. doi: 10.1186/1471-2164-12-553
120. Plants For A future. Vitellaria paradoxa C.F. Gaertn. https://pfaf.org/user/Plant.aspx?LatinName=Vitellaria+paradoxa#:~:text=Prefers%20a%20pH%20in%20the,as%201%2C300%20metres%5B299%20%5D
Рецензия
Для цитирования:
Асмаре М.Т. Определение видов деревьев, устойчивых к кислой почве. Овощи России. 2024;(2):71-78. https://doi.org/10.18619/2072-9146-2024-2-71-78
For citation:
Asmare M.T. Acidic soil-tolerant tree species identification. Vegetable crops of Russia. 2024;(2):71-78. https://doi.org/10.18619/2072-9146-2024-2-71-78