Preview

Овощи России

Расширенный поиск

Получение удвоенных гаплоидов огурца (Cucumis sativus L.)

https://doi.org/10.18619/2072-9146-2019-5-3-14

Полный текст:

Аннотация

Разработка и внедрение клеточных технологий существенно изменили селекционный процесс у сельскохозяйственных растений во всем мире. Производство чистых линий у сельскохозяйственных культур, особенно у перекрестноопыляемых растений, таких как огурец (Cucumis sativus L.), требует больших временных и трудовых затрат, а также и достаточных финансовых вложений. В связи с этим использование удвоенных гаплоидов (DH-растений) для получения полностью гомозиготных линий в течение одного года представляет большой интерес для современной селекции, в том числе у этой культуры. Важнейшим фактором, препятствующим использованию DH-растений в селекции огурца, является отсутствие эффективного способа их производства в больших масштабах. В обзоре представлены исторические факты и рассмотрены три основных способа получения удвоенных гаплоидов огурца: партеногенеза in situ (опыление неполноценной (облученная или обработанная химическими веществами) пыльцой); андрогенеза (культуры пыльников/микроспор in vitro); гиногенеза (культура неопыленных семяпочек in vitro). Произведен сравнительный анализ публикаций с учетом эффективности использующихся технологий, выявлены критические факторы, влияющие на выход гаплоидных и удвоенных гаплоидных растений, указаны преимущества и ограничения каждой из технологий.

Об авторах

Е. А. Домблидес
ФГБНУ «Федеральный научный центр овощеводства»
Россия

Домблидес Елена Алексеевна – кандидат с.-х. наук, зав. лаб. репродуктивной биотехнологии в селекции с.-х. растений

143072, Московская обл., Одинцовский р-н, п. ВНИИССОК, ул. Селекционная, д. 14



С. Н. Белов
ФГБНУ «Федеральный научный центр овощеводства»
Россия

Белов Сергей Николаевич – м.н.с. лаб. репродуктивной биотехнологии в селекции с.-х. растений

143072, Московская обл., Одинцовский р-н, п. ВНИИССОК, ул. Селекционная, д. 14



А. В. Солдатенко
ФГБНУ «Федеральный научный центр овощеводства»
Россия

Солдатенко Алексей Васильевич – доктор с.-х. наук, проф. РАН, главный н.с., директор

143072, Московская обл., Одинцовский р-н, п. ВНИИССОК, ул. Селекционная, д. 14



В. Ф. Пивоваров
ФГБНУ «Федеральный научный центр овощеводства»
Россия

Пивоваров Виктор Федорович – академик РАН, доктор с.-х. наук, проф.

143072, Московская обл., Одинцовский р-н, п. ВНИИССОК, ул. Селекционная, д. 14



Список литературы

1. Вавилов НИ. Генетика на службе социалистического земледелия. Колос. 1932; 32-56

2. Иванов МА. Экспериментальное получение гаплоидов у Nicotinarustica (со специальным рассмотрением гаплоидии у цветковых растений). Изв. биол.-геогр. научн.-иссл. института при Восточно-Сибирском гос. университете. 1937;3(4):71-56.

3. Карпеченко ГД. Экспериментальная полиплоидия и гаплоидия. Теоретические основы селекции растений. 1935;1:397-434

4. Хохлов СС, Гришина ЕВ, Зайцева МИ., Тырнов BC, Малышева-Шишкинская HA, Гаплоидия у покрытосеменных растений. Изд. Саратовского университета. 1970;13

5. Шмыкова Н.А., Химич Г.А., Коротцева И.Б., Домблидес Е.А. Перспективы получения удвоенных гаплоидов растений семейства Cucurbitaceae. Овощи России. 2015;(3-4):28-31. https://doi.org/10.18619/2072-9146-2015-3-4-28-31

6. Супрунова НА, Шмыкова ТП. Индукция гиногенеза в культуре in vitro неопыленных семяпочек Cucumis sativus L. Гавриш. 2009;4:40-44

7. Aalders LE. Monoploidy in Cucumbers. J. Heredity. 1958;49(1);41-44.

8. Abdollahi MR, Najafi S, Sarikhani H, Moosavi SS. Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium. Turk J Biol. 2016; 40:1–10.

9. Amirian R, Hojati Z, Azadi P. Male flower induction significantly affects androgenesis in cucumber (Cucumis sativus L.). The Journal of Horticultural Science and Biotechnolog. 2019.

10. Antos M, Bułat E, Zawislak E. Cucumber (Cucumis sativus L.) haploids induction with use of X-rays. Folia Hort. 2001;13(1A):81–84.

11. Asadi A, Zebarjadi A, Abdollahi MR, Seguн-Simarro JM. Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.). Euphytica. 2018;11:214,216.

12. Baktemur G, Taskın H, Bьyьkalaca S. Comparison of different methods for separation of haploid embryo induced through irradiated pollen and their economic analysis in melon (Cucumis melo var. inodorus). Sci World J. 2013;10:1–7.

13. Belling J, Blakeslee AF. The configurations and sizes of the chromosomes in the trivalents of 25-chromosome Daturas. Proceedings of the National Academy of Sciences of the United States of America. 1924;10(3):116.

14. Blakeslee A, Belling J, Farnhram ME, Berger AD. A haploid mutant in Datura stramonium. Science. 1922;55:646-647.

15. Caglar G, Abak K. In situ haploid embryo induction in cucumber (Cucumis sativus L.) after pollination by irradiated pollen. Turk J Agric For. 1999a;23(EK1):63–72.

16. Caglar G, Abak K. Obtention of in vitro haploid plants from in situ induced haploid embryos in cucumber (Cucumis sativus L.). Turk J Agric For. 1999b;23(3):283–290.

17. Caglar G, Abak K. Progress in the production of haploid embryos, plants and doubled haploids in cucumber (Cucumis sativus L.) by gamma irradiated pollen in Turkey. Acta Hort. 1999c;492:317–322.

18. Can H, Kal U, Ozyigit I, Paksoy M, Turkmen O. Construction, characteristics and high throughput molecular screening methodologies in some special breeding populations: a horticultural perspective. Journal of Genetics. 2019;98(3).

19. Chambonnet D, Dumas De Vaulx R. Obtention of embryos and plants from in vitro culture of unfertilized ovules of Cucurbita pepo. Cucurbit genetics. 1985;Coop Rep 8:66.

20. Chase SS, Troits B. Culture of haploids cell. M. Gen. Coop. N. L. 1949;33:130.

21. Chee RP, Leskovar DI, Cantliffe DJ. Optimizing embryogenic callus and embryo growth of a synthetic seed system for sweet potato by varying media nutrient concentrations. J Am Soc Hortic Sci. 1992;117:663–667.

22. Chen J, Zhan Y, Qian C, Lou Q. Cultivation method for isolated microspore of cucumber. Nanjing Agricultural University.2008. Patent no CN 101317548.

23. Chen J., Vanek E., Pieper M. Method for producing haploid, dihaploid and doubled haploid plants by isolated microspore culture. US2018/0213736A1

24. Chu CC, Wang CC, Sun CS, Chen H, Yin KC, Chu CY, Bi FY. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. J Sci China Math. 1975;18(5):659–668.

25. Clausen RE, Mann MC. Inheritance in Nicotiana Tabacum: V. The Occurrence of Haploid Plants in Interspecific Progenies. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. 1924;10(4):121–4.

26. Claveria E, Garcia-Mas J, Dolcet-Sanjuan R. Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J Am Soc Hortic Sci. 2005;130(4):555–560.

27. Dal B, Sari N, Solmaz I. Effect of different irradiation sources and doses on haploid embryo induction in Altinbas (Cucumis melo L. var. inodorus) melons. Turkish Journal of Agriculture and Forestry. 2016;40:552–559.

28. Deunff EL, Sauton A. Effect of parthenocarpy on ovule development in cucumber (Cucumis sativus L.) after pollination with normal and irradiated pollen. Sex Plant Reprod. 1994;7(4):221–228.

29. Diao WP, Jia YY, Song H, Zhang XQ, Lou QF, Chen JF. Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenerants using SSR markers.Sci Hortic . 2008; 119(3):246–251.

30. Dirks R. Method for the production of double-haploid cucumbers. 1996. United States Patent No. 5,492,827.

31. Dirks, R, Van Dun K, De Snoo CB, Van Den Berg M, Lelivelt CL, Voermans W, Van Der Zeeuw, E. Reverse breeding: A novel breeding approach based on engineered meiosis. Plant Biotechnology Journal. 2009;7:837–845.

32. Dolcet-Sanjuan R, Claveria E, Garcia-Mas J. Cucumber (Cucumis sativus L.) dihaploid line production using in vitro rescue of in vivo induced parthenogenic embryos. Acta Hort. 2006; 725(2):837–844.

33. Domblides EA, Shmykova NA, Khimich GA, Korotseva IB, Kan LYu, Ermolaev AS, Belov SN, Korotseva KS, Domblides AS, Pivovarov VF, Soldatenko AV. Рroduction of doubled haploid plants of Сucurbitaceae family crops through unpollinated ovule culture in vitro. VI International Symposium on Cucurbits. 2019. June 30/July 4, p.51.

34. Dong YQ, Zhao WX, Li XH, Liu XC, Gao NN, Huang JH, Wang WY, Xu XL, Tang ZH. Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Rep. 2016;35:1991–2019.

35. Dryanovska OA. Induced callus in vitro from ovaries and anthers of species from the Cucurbitaceae family. C R Acad Bulg Sci. 1985;38:1243–1244.

36. Dumas de Vaulx R. Obtention de plantes haploides chez le melon (Cucumis melo L.) apres pollinisation par Cucumis ficifolius A. Rich C R Acad Sci III-Vie. 1979;289:875–878.

37. Dunwell JM. Haploids in flowering plants: origins and exploitation. Plant Biotechnol J. 2010;8:377–424.

38. Eun, JS, Bak HB. Studies on the anther culture of Cucumis sativus: Hostological studies on the diploid. Kor J Plant Tissue Culture. 1974; 2(1):17-22.

39. Faris NM, Niemirowicz-Szczytt K. Cucumber (Cucumis sativus L.) embryo development in situ after pollination with irradiated pollen. Acta Biol. 1999;41:111-118.

40. Ficcadenti N, Sestili S, Annibali S, Di Marco M, Schiavi M. In vitro gynogenesis to induce haploid plants in melon Cucumis melo L. Genet Breed. 1999;53:255–257.

41. Forster BP, Hebe rle-Bors E, Kasha KJ, Touraev A. The resurgence of haploids in higher plants. Trends Plant Sci. 2007;12(8):368–375.

42. Gains EF, Aase HC. A haploid wheat plant. Armer. Jour. Bot. 1926;13:373-385.

43. Gałązka J, Niemirowicz-Szczytt K. Review of research on haploid production in cucumber and other cucurbits. Folia Hort. 2013;25(1):67–78.

44. Gałązka J, Słomnicka R, Gуral-Radziszewska K, Niemirowicz-Szczytt K. Follination to DH-lines - verification and optimisation of protocol for production of double haploids in cucumber. Acta Sci. Pol. Hortorum Cultus. 2015;14(3):81-92.

45. Gemes-Juhasz A, Balogh P, Ferenczy A, Kristof Z. Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep. 2002;21(2):105–111.

46. Gemes-Juhasz A, Venczel G, Balogh P. Haploid plant induction in zucchini (Cucurbita pepo L. convar. giromontiina Duch) and in cucumber (Cucumis sativus L.) lines through in vitro gynogenesis. Acta Hort. 1997;447:623–625.

47. Germana MA. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 2011;30(5):839–857.

48. Gonzalo MJ, Olivier M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). TAG. 2005;110:802-811.

49. Guha S, Maheshwari SC. Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature. 1966;212:97-98.

50. Guha S, Maheshwari SC. Development of embrioides from pollen grains of Datura in vitro. Phytomorphology. 1967;17(1-4):454-461.

51. Guha S, Maheshwari SC. In vitro production of embryos from anther of Datura. Nature. 1964; 204:497.

52. Hamidvand Y, Abdollahi MR, Chaichi M, Moosavi SS. The effect of plant growth regulators on callogenesis and gametic embryogenesis from another culture of cucumber (Cucumis sativus L.). Int J Agric Crop Sci. 2013;5(10):1089.

53. Hayase H. Studies on Cucurbita crosses. V. The occurrence of twin plants with a haploid chromosome number in the F 1 of C. maxima x C. moschata. Jap. Jour. Breed. 1954; 4:115-121.

54. HO KM, JONES GE. Mingo barley. Canadian Journal of Plant Science. 1980;60(1): 279-280.

55. Kasha, KJ. Haploids in higher plants. International Symposium on Haploids in Higher Plants. 1974.

56. Kiełkowska A, Havey MJ. In vitro flowering and production of viable pollen of cucumber. Plant Cell, Tissue and Organ Culture (PCTOC). 2012:109(1):3-82.

57. Kimber G, Riley R. The relationship of diploid progenitors of hexaploid wheat. Canad. Jour. Genet. and Cytol. 1963; 5:83-88.

58. Kostoff D. The problem of haploidy. (Cytogenetic studies in Nicotina haploids and their bearing on some other cytogenetic problems. Bib. Genet. 1942; 13:1-148.

59. Ashok Kumar HG, Murthy HN, Paek KY. Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L. Sci Hortic. 2003; 98(3):213–222.

60. Ashok Kumar HG, Murthy HN. Effect of sugars and amino acids on androgenesis of Cucumis sativus. Plant Cell Tiss Org Cult. 2004; 78(3):201–208.

61. Ashok Kumar HG, Ravishankar BV, Murthy HN The Influence of Polyamines on Androgenesis of Cucumis sativus L. Eur J Hortic Sci. 2004; 69(5):201–205.

62. Kuo CS. The preliminary studies on culture of unfertilized ovaries of rise in vitro. Acta Bot. Sin. 1982; 24, 33-38. [in Chinese with English abstract]

63. Kurtar ES, Balkaya A, Kandemir D. Evaluation of haploidization efficiency in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) through anther culture. Plant Cell, TissueOrgan Cult. 2016;127(2):497–511.

64. Kurtar ES, Balkaya A. Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell Tiss. Org. Cult. 2010;102(3): 267-277.

65. Lazarte JE, Sasser CC. Asexual embryogenesis and plantlet development in anther culture of Cucumis sativus L. HortScience. 1982;17:88.

66. Li JW, Si SW, Cheng JY, Li JX, Liu JQ. Thidiazuron and silver nitrate enhanced gynogenesis of unfertilized ovule cultures of Cucumis sativus. Biol Plant. 2013;57(1):164–168.

67. Lichter R. Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol. 1982;105:427–434.

68. Lim W, Earle ED. Effect of in vitro and in vivo colchicine treatments on pollen production and fruit recovery on melon plants obtained after pollination with irradiated pollen. Plant Cell Tiss Org Cult. 2008;95(1):115–124.

69. Lindstrom E.W. A haploid mutant in the tomato. J. Heredity. 1929;20:23-30.

70. Lofti M, Alan AR, Henning MJ, Jahn MM, Earle ED. Production of haploid and double haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep. 2003; 21(11):1121–1128

71. Lofti M, Salehi S. Detection of cucumber parthenogenic haploid embryos by floating the immature seeds in liquid medium. Proceeding of IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae 2008; 375–380.

72. Maluszynski M, Kasha KJ, Forster BP, Szarejko I. Doubled haploid production in crop plants: a manual. Kluwer Academic. 2003.

73. Matsuda K, Kikuta Y, Okazawa YA. Revision of the Medium for Somatic Embryogenesis in Carrot Suspension Culture. J. Fac. Agr. Hokkaido Univ. 1981;60:183-193.

74. Miller CO. Kinetin and Kinetin-Like Compounds. Modern Methods of Plant Analysis. Moderne Methoden der Pflanzenanalyse. Springer Berlin Heidelberg; 1963;194–202.

75. Moqbeli E, Peyvast G, Hamidoghli Y, Olfati JA. In vitro cucumber haploid line generation in several new cultivars. AsPac J Mol Biol Biotechnol. 2013;21(1):18–25.

76. Morisson G. The occurrence and use of haploid plants in tomato with special reference to the variety Marglobe. Proc. VI. Int. Cong. Genet. 1932;2:137.

77. Mulualem T, Abate M. Heterotic Response in Major Cereals and Vegetable Crops. International Journal of Plant Breeding and Genetics. Science Alert. 2016;10(2):69–78.

78. Murashige, T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 1962;15:473–497.

79. Niemirowicz-Szczytt K, Dumas de Vaulx R. Preliminary data on haploid cucumber (Cucumis sativus L.) induction. Cucurbit Genetics Coop. 1989;12:24-25.

80. Niemirowicz-Szczytt K, Fаris NM., Nikolova V, Rakoczy-TrojanowskA M, Malepszy S. Optimization of cucumber (Cucumis sativus L.) haploid production and doubling. Cucurbitaceae. 1995;94:169-171.

81. Ozsan T., Gozen V. and Onus A. Cucumber Gynogenesis: Effects of 8 Different Media on Embryo and Plant Formation. International Journal of Agriculture Innovations and Research. 2017;6(2):419-422.

82. Przyborowski JA and Niemirowicz-Szczytt K. Main factors affecting cucumber (Cucumis sativus L.) haploid embryo development and haploid plant characteristics. Plant Breeding. 1994;112:70-75.

83. Przyborowski JA. Haploidy in cucumber (Cucumis sativus L.). In: In vitro haploid production in higher plants. Kluwer Academic Publishers. 1996.

84. Rakha M, Metwally E, Moustafa S, Etman A, Dewir Y. Evaluation of regenerated strains from six Cucurbita interspecific hybrids obtained through anther and ovule in vitro cultures. Aust J Crop Sci. 2012;6(1):23–30

85. Sauton A. Haploid gynogenesis in Cucumis sativus induced by irradiated pollen. Cucurbit Genetics Coop. 1989; 12:22-23.

86. Sauton A. Effect of season and genotype on gynogenetic haploid production in muskemlon, Cucumis melo L. Sci. Hort. 1988;35(1-2):71-75.

87. Sauton A., Dumas de vaulx R. Production of haploid plants in melon (Cucumis melo L.) As a result of gynogenesis induced by irradiated pollen. Agronomie. 1987;7:141-147.

88. Savin F, Decombe le-couriour M, Hallard J. 1988. The x-ray detection of haploid embryos arisen in muskmelon (Cucumis melo L.) Seeds and resulting from a parthenogenetic development induced by irradiated pollen. Cucurbit genetics coop. 1988;11:36-42.

89. Smiech M, Sztangret-Wis ́ niewska J, Galecka T, Korzeniewska A, Marzec L, Kolakowska G, Piskurewicz U, Niemirowicz-Szczytt K. Potential use of RAPD markers in characteristics of cucumber (Cucumis sativus L.) haploids and double-haploids. Acta Soc Bot Pol. 2008; 77(1):29–34.

90. Song H, Lou QF, Luo XD, Wolukau JN, Diao WP, Qian CT, Chen JF. Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant Cell Tiss Org Cult. 2007; 90(3):245–254.

91. Sorntip A, Poolsawat O, Kativat C, Tantasawat PA. Gynogenesis and doubled haploid production from unpollinated ovary culture of cucumber (Cucumis sativus L.). Canadian Journal of Plant Science. 2017; 98(2):353-361.

92. Suprunova T, Shmykova N. In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. In: Pitra t M (ed) Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. 2008;371–374.

93. Swaminathan MS, Singh MP. X-ray induced somatic haploidy in watermelon. Current Sci. 1958;27,2:63-64.

94. Sztangret-Wiśniewska J, Gałecka T, Korzeniewska A, Marzec I, Kołakowska G, Piskurewicz U. Characteristics of double-haploid cucumber (Cucumis sativus L.) Lines resistant to downy mildew (Pseudoperonospora cubensis). Proc. Cucurbitaceae 2006;515-526.

95. Tantasawat PA, Sorntip A, Poolsawat O, Chaowiset W, Pornbungkerd P. Evaluation of factors affecting embryo-like structure and callus formation in unpollinated ovary culture of cucumber (Cucumis sativus). Int J Agric Biol.2015;17(3):613–618.

96. Touraev A, Forster BP, Jain SM, editors. Advances in Haploid Production in Higher Plants. Springer Netherlands; 2009; http://dx.doi.org/10.1007/978-1-4020-8854-4

97. Truong-Andre I. In vitro haploid plants derived from pollination by irradiated pollen of cucumber. Proceedings of eucarpia meeting on cucurbit genetics and breeding. Avignon Monfavet. 1988;143–144.

98. Wu BJ, Chen KC. Cytological and embryological studies on haploid plant production from cultured unpollinated ovaries of Nicotiana tabacum L. Acta Bot. Sin. 1982; 24: 125-129. [in Chinese with English abstract].

99. Zhan Y, Chen JF, Malik AA. Embryoid induction and plant regeneration of cucumber (Cucumis sativus L.) through microspore culture. Acta Hortic Sin. 2009;36(2):221–226.


Для цитирования:


Домблидес Е.А., Белов С.Н., Солдатенко А.В., Пивоваров В.Ф. Получение удвоенных гаплоидов огурца (Cucumis sativus L.). Овощи России. 2019;(5):3-14. https://doi.org/10.18619/2072-9146-2019-5-3-14

For citation:


Domblides E.A., Belov S.N., Soldatenko A.V., Pivovarov V.F. Production of Doubled Haploids in cucumber. Vegetable crops of Russia. 2019;(5):3-14. (In Russ.) https://doi.org/10.18619/2072-9146-2019-5-3-14

Просмотров: 36


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)