Preview

Овощи России

Расширенный поиск

Вклад агролесоводства в обеспечение средств к существованию и поглощение углерода в Эфиопии

https://doi.org/10.18619/2072-9146-2025-6-225-232

Аннотация

Agroforestry is a powerful practice for sustainable and regenerative intensification because it promotes multifunctional landscapes that deliver ecological functions that contribute to livelihoods, land productivity, biodiversity conservation, and other ecosystem services. The main idea of this paper is to review Agroforestry contribution to livelihood and carbon sequestration in Ethiopia. Home gardens, farms, woodlots, and coffee farms are the most prevalent forms of agroforestry methods; yet, farmer perceptions and their distribution differed. Amazingly, because agroforestry produces a variety of services from a small unit of land, each technique adds many advantages. The main benefit was diversification of production, which is the optimal approach, especially for smallholder farmers whose livelihoods depend on agricultural systems. In comparison to monocropping, agroforestry is much more acceptable and recommended. As a result, it offers both environmental and socioeconomic benefits, such as reduced soil erosion, increased soil moisture and fertility, coffee shade, and maintenance of the microclimate balance, as well as tree products and income. These and other advantages help rural communities diversify their sources of income and provide protection. Much of the aboveground carbon is held in homegardens (28.2 ± 6.0 Mg C ha−1), perennial tree crop systems (23.7±10.0 Mg C ha-1) and trees on boundaries (26.7±14.1 Mg C ha−1). In general, it's a useful tool for adjusting to and reducing climate change. As a consequence, farmers considered it as essential to maximize the productive potential of their land and enhancing the standard of living for smallholders. Therefore, in order to help farmers improve their standard of living and adapt to the unpredictable nature of climate change, the government should support agroforestry practices.

Об авторе

К. Х. Биру
Эфиопский центр развития лесного хозяйства в Хавассе, Программа исследований плантаций
Эфиопия

Касу Хайлу Биру – исследователь

Аддис-Абеба



Список литературы

1. van Noordwijk M., Catacutan D.C., Duguma L.A., Pham T.T., Leimona B., Dewi S., et al. Agroforestry matches the evolving climate change mitigation and adaptation agenda in Asia and Africa. Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa: Springer; 2023. p. 21-52.

2. Muthuri C., Ong C., Black C., Mati B.M., Ngumi V., van Noordwijk M. Modelling the effects of leafing phenology on growth and water use by selected agroforestry tree species in semi-arid Kenya. Land Use and Water Resources Research. 2004;4(1732-2016-140280).

3. Muchane M.N., Sileshi G.W., Gripenberg S., Jonsson M., Pumariño L., Barrios E.. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agr. Ecosyst. Environ. 2020;295:106899.

4. Quandt A., Neufeldt H., Gorman K. Climate change adaptation through agroforestry: Opportunities and gaps. Curr. Opin. Environ. Sustain. 2023;60:101244. https://doi.org/10.1016/j.cosust.2022.101244

5. Bayala J., Sanou J., Teklehaimanot Z., Kalinganire A., Ouédraogo S. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr. Opin. Environ. Sustain. 2014;6:28-34. https://doi.org/10.1016/j.cosust.2013.10.004

6. Kuyah S., Whitney C.W., Jonsson M., Sileshi G.W., Öborn I., Muthuri C.W., et al. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agron. Sustain. Dev. 2019;39:1-18. https://doi.org/10.1007/s13593-019-0589-8

7. Pumariño L., Sileshi G.W., Gripenberg S., Kaartinen R., Barrios E., Muchane M.N., et al. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 2015;16(7):573-582.

8. Zomer R.J., Neufeldt H., Xu J., Ahrends A., Bossio D., Trabucco A., et al. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016;6(1):29987. https://doi.org/10.1038/srep29987

9. Montagnini F., Nair P.R., editors. Carbon sequestration: an underexploited environmental benefit of agroforestry systems. New Vistas in Agroforestry: A Compendium for 1 st World Congress of Agroforestry, 2004; 2004: Springer.

10. Nair P.R., Nair V.D. ‘Solid–fluid–gas’: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Curr. Opin. Environ. Sustain. 2014;6:22-27. https://doi.org/10.1016/j.cosust.2013.07.014

11. Rosenstock T.S., Wilkes A., Jallo C., Namoi N., Bulusu M., Suber M., et al. Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agr. Ecosyst. Environ. 2019;284:106569. https://doi.org/10.1016/j.agee.2019.106569

12. Duguma L.A., Minang P.A., Watson C., Nath A.J., Muthee K.W., van Noordwijk M., et al. Agroforestry as a key intervention to achieve nationally determined contribution (NDC) targets. Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa: Springer; 2023. p. 641-664.

13. Mansourian S., Berrahmouni N. Review of forest and landscape restoration in Africa 2021: Food & Agriculture Org.; 2021.

14. Ketsela Hailemicael B. The contribution of Eucalyptus woodlots to the livelihoods of small scale farmers in tropical and subtropical countries with special reference to the Ethiopian highlands. 2012.

15. Abebe T. Diversity in homegarden agroforestry systems of Southern Ethiopia: Wageningen University and Research; 2005.

16. Asfaw Z., Ågren G.I. Farmers’ local knowledge and topsoil properties of agroforestry practices in Sidama, Southern Ethiopia. Agroforestry Systems. 2007;71:35-48. https://doi.org/10.1007/s10457-007-9087-0

17. Duguma, Hager H. Woody plants diversity and possession, and their future prospects in small-scale tree and shrub growing in agricultural landscapes in central highlands of Ethiopia. Small-scale Forestry. 2010;9:153-174. https://doi.org/10.1007/s11842-009-9108-0

18. Ayele Y., Ewnetu Z., Asfaw Z. Economic evaluation of coffee-enset-based agroforestry practice in Yirgachefe Woreda, Ethiopia: Comparative analysis with parkland agroforestry practice. Journal of Economics and Sustainable Development. 2014;5(27):72-82.

19. Duguma, Hager H. Forest products scarcity perception and response by tree planting in the rural landscapes: farmers’ views in central highlands of Ethiopia. Ekológia (Bratislava). 2009;28(2):1581-69.

20. Kebebew Z. Profitability and household income contribution of growing Eucalyptus globulus (Labill.) to smallholder farmers: the case of the Central Highlands of Oromia, Ethiopia. 2002.

21. Duguma L.A., Hager H. Forest products scarcity perception and response by tree planting in the rural landscapes: farmers’ views in central highlands of Ethiopia. Ekológia (Bratislava). 2009;28(2):158-169.

22. Negash M., Kanninen M. Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agr. Ecosyst. Environ. 2015;203:147-155. https://doi.org/10.1016/J.AGEE.2015.02.004

23. Lulu M., Lemma B., Melese A. Soil organic carbon and nutrients in smallholding land uses in southern Ethiopia. J. Plant Nutr. Soil Sci. 2020;183(1):69-79. https://doi.org/10.1002/jpln.201900243?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle

24. Sahle M., Saito O., Fürst C., Yeshitela K. Quantification and mapping of the supply of and demand for carbon storage and sequestration service in woody biomass and soil to mitigate climate change in the socio-ecological environment. Science of the total environment. 2018;624:342-354. https://doi.org/10.1016/j.scitotenv.2017.12.033

25. Betemariyam M., Negash M., Worku A. Comparative analysis of carbon stocks in home garden and adjacent coffee based agroforestry systems in Ethiopia. Small-Scale Forestry. 2020;19:319-334. https://doi.org/10.1007/s11842-020-09439-4

26. Birhane E., Ahmed S., Hailemariam M., Negash M., Rannestad M.M., Norgrove L. Carbon stock and woody species diversity in homegarden agroforestry along an elevation gradient in southern Ethiopia. Agrofor. Syst. 2020;94:1099-1110.

27. Linger E. Agro-ecosystem and socio-economic role of homegarden agroforestry in Jabithenan District, North-Western Ethiopia: implication for climate change adaptation. SpringerPlus. 2014;3(1):1-9. https://doi.org/10.1186/2193-1801-3-154

28. Mekonen T., Giday M., Kelbessa E. Ethnobotanical study of homegarden plants in Sebeta-Awas District of the Oromia Region of Ethiopia to assess use, species diversity and management practices. J. Ethnobiol. Ethnomed. 2015;11:1-13. https://doi.org/10.1186/s13002-015-0049-8

29. Sahle M., Saito O., Demissew S. Characterization and mapping of enset-based home-garden agroforestry for sustainable landscape management of the Gurage socioecological landscape in Ethiopia. Env. Sci. Poll. Res. 2022;29(17):24894-910. https://doi.org/10.1007/s11356-021-17605-0

30. Tadesse E., Abdulkedir A., Khamzina A., Son Y., Noulèkoun F. Contrasting species diversity and values in home gardens and traditional parkland agroforestry systems in Ethiopian sub-humid lowlands. Forests. 2019;10(3):266. https://doi.org/10.3390/f10030266

31. Furo G., Manaye A., Negasa A. Identification of spice shade and support tree species, south western Ethiopia. Agrofor. Syst. 2020;94(1):95-102. https://doi.org/10.1007/s10457-019-00372-w

32. Hoekstra D., Torquebiau E., Bishaw B. Agroforestry: potentials and research needs for the Ethiopian highlands: ICRAF; 1990.

33. Yadessa A., Itanna F., Olsson M. Contribution of indigenous trees to soil properties: the case of scattered Cordia africana lam. Trees in croplands of western Oromia. Ethiop. J. Nat. Resour. 2001;3(2):245-70.

34. Gindaba J., Rozanov A., Negash L. Trees on farms and their contribution to soil fertility parameters in Badessa, eastern Ethiopia. Biol. Fertil. Soils. 2005;42:66-71.

35. Biruk A. Woody species composition and socio-economic roles of traditional agroforestry practices across different agro-ecological zones in South Eastern Langano, Oromiya: M. Sc. Thesis, Hawassa University, Wondo Genet, Ethiopia; 2006.

36. Nigussie A., Taye E., Bukero G. Survey on potentials and constraints of shade tree species for arabica coffee production in South Ethiopia. Int. J. Recent Res. Life Sci. 2014;1(1):1-11.

37. Hundera K., Honnay O., Aerts R., Muys B. The potential of small exclosures in assisting regeneration of coffee shade trees in South-Western Ethiopian coffee forests. Afr. J. Ecol. 2015;53(4):389-397. https://doi.org/10.1111/aje.12203

38. Muleta .D, Assefa F., Nemomissa S., Granhall U. Socioeconomic benefits of shade trees in coffee production systems in Bonga and Yayuhurumu districts, southwestern Ethiopia: farmers’ perceptions. Ethiop. J. Educ. Sci. 2011;7(1):39-55.

39. Endale B. Environmental Contribution of Agroforestry Systems to Smallholder Farmers around Jimma town, southwestern Ethiopia, unpublished MSc: Thesis; 2017.

40. Ebisa L. Effect of dominant shade trees on coffee production in Manasibu District, West Oromia, Ethiopia. Science, Technology and Arts Research Journal. 2014;3(3):18-22. https://doi.org/10.4314/STAR.V3I3.3

41. Zerga B. Ecological impacts of Eucalyptus plantation in eza wereda, Ethiopia. Int Inv J Agric Soil Sci. 2015;3(4):47-51.

42. Pohjonen V., Pukkala T. Eucalyptus globulus in Ethiopian forestry. For. Ecol. Manag 1990;36(1):19-31.

43. Mekonnen Z. Community opinion, marketing and current debates on eucalyptus in Huruta District, Arsi Zone of Oromia Region, Ethiopia. Eucalyptus Species Management, History, Status and Trends in Ethiopia. 2010:15-7.

44. Reyes T., Luukkanen O., Quiroz R. Small cardamom—precious for people, harmful for mountain forests. MRD. 2006;26(2):131-137.

45. Teketay D, Tegineh A. Traditional tree crop based agroforestry in coffee producing areas of Harerge, Eastern Ethiopia. Agrofor. Syst. 1991;16:257-267.

46. Biazin B., Haileslassie A., Zewdie T., Mekasha Y., Gebremedhin B., Fekadu A., et al. Smallholders’ avocado production systems and tree productivity in the southern highlands of Ethiopia. Agrofor. Syst. 2018;92:127-137. https://doi.org/10.1007/s10457-016-0020-2

47. Admasu T.G., Jenberu A.A. TheImpacts of Apple-based Agroforestry Practices on the Livelihoods of Smallholder Farmers in Southern Ethiopia. Trees, Forests and People. 2022;7:100205. https://doi.org/10.1016/j.tfp.2022.100205

48. Gebreegziabher Z., van Kooten G.C. Does community and household tree planting imply increased use of wood for fuel? Evidence from Ethiopia. Forest Policy and Economics. 2013;34:30-40. https://doi.org/10.1016/j.forpol.2013.03.003

49. Mekonnen M., Worku T., Yitaferu B., Cerda A., Keesstra S. Economics of agroforestry land use system, Upper Blue Nile Basin, northwest Ethiopia. Agrofor. Syst. 2021:1-13.

50. Mengistu S., Keftasa D., Yami A. Productivity of four Sesbania species on two soil types in Ethiopia. Agrofor. Syst. 2002;54:235-244.

51. Balehegn M., Eik L.O., Tesfay Y. Silvopastoral system based on Ficus thonningii: an adaptation to climate change in northern Ethiopia. Afr. J. Range Forage Sci. 2015;32(3):183-191. https://doi.org/10.2989/10220119.2014.942368

52. Yaebiyo G., Birhane E., Tadesse T., Kiros S., Hadgu K.M. Evaluating woody species composition and regeneration in controlled and free grazing systems for scaling up agroforestry in the highlands of northern Ethiopia. Agrofor. Syst. 2021;95(6):1229-1244.

53. Birhane E., Teklay R., Gebrehiwet K., Solomon N., Tadesse T. Maintaining Acacia polyacantha trees in farmlands enhances soil fertility and income of farmers in North Western Tigray, Northern Ethiopia. Agrofor. Syst. 2019;93:2135-2149.

54. Tadele M., Birhane E., Kidu G., G-Wahid H., Rannestad M.M. Contribution of parkland agroforestry in meeting fuel wood demand in the dry lands of Tigray, Ethiopia. J. Sustain. For. 2020;39(8):841-53. https://doi.org/10.1080/10549811.2020.1738946

55. Kassa A.W., Nigussie Z.A. Management and Woody Species Diversity in Boundary Agroforestry of Banja District, Northwestern Ethiopia. Small-scale Forestry. 2022;21(3):393-415. https://doi.org/10.1007/s11842-022-09503-1

56. Kidanu S., Mamo T., Stroosnijder L. Biomass production of Eucalyptus boundary plantations and their effect on crop productivity on Ethiopian highland Vertisols. Agrofor. Syst. 2005;63:281-90.

57. Duguma. Financial analysis of agroforestry land uses and its implications for smallholder farmers livelihood improvement in Ethiopia. Agrofor. Syst. 2013;87:217-231.

58. Nigatu A., Wondie M., Alemu A., Gebeyehu D., Workagegnehu H. Productivity of highland bamboo (Yushania alpina) across different plantation niches in West Amhara, Ethiopia. For. Sci. Technol. 2020;16(3):116-122. https://doi.org/10.1080/21580103.2020.1791260

59. Manaye A., Tesfamariam B., Tesfaye M., Worku A., Gufi Y. Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance Manag. 2021;16(1):14. https://doi.org/10.1186/s13021-021-00174-7

60. Abdelkdair A., Schultz R.C. Water harvesting in a ‘runoff-catchment’agroforestry system in the dry lands of Ethiopia. Agrofor. Syst. 2005;63:291-298.

61. Kebebew Z., Garedew W., Debela A. Understanding homegarden in household food security strategy: case study around Jimma, Southwestern Ethiopia. Res. J. Appl. Sci. 2011;6(1):38-43.

62. Melaku E., Ewnetu Z., Teketay D. Non-timber forest products and household incomes in Bonga forest area, southwestern Ethiopia. J. For. Res. 2014;25:215-223. https://doi.org/10.1007/s11676-014-0447-0

63. Kebebew Z, Urgessa K. Agroforestry perspective in land use pattern and farmers coping strategy: experience from southwestern Ethiopia. World J. Agric. Sci. 2011;7(1):73-77.

64. Agize M., Chama E., Shonga A. Income Generating Activities of Women on Home Garden Farming in Damot Gale District (Woreda) of Wolaita Zone, Southern Ethiopia. International Journal of African and Asian Studies. P. 2016;23.

65. Jama B., Zeila A. Agroforestry in the drylands of Eastern Africa. A call for action World Agro-forestry Center. 2005.

66. Gebreegziabher Z., Mekonnen A., Kassie M., Köhlin G. Household tree planting in Tigrai, northern Ethiopia: Tree species, purposes, and determinants. 2010.

67. Mesfin F., Demissew S., Teklehaymanot T. An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia. J. Ethnobiol. Ethnomed. 2009;5(1):1-18.

68. Abera B. Medicinal plants used in traditional medicine by Oromo people, Ghimbi District, Southwest Ethiopia. J. Ethnobiol. Ethnomed. 2014;10:1-15. https://doi.org/10.1186/1746-4269-10-40

69. Hunde D, Asfaw Z., Kelbessa E. Use of traditional medicinal plants by people of ‘Boosat’sub district, Central Eastern Ethiopia. Ethiop. J. Health Sci. 2006;16(2).

70. Negash M. Trees management and livelihoods in Gedeo's agroforests, Ethiopia. Forests, Trees and Livelihoods. 2007;17(2):157-68.

71. El Tahir B.A., Vishwanath A. Estimation of economic value of agroforestry systems at the local scale in Eastern Sudan. Journal of Geoscience and Environment Protection. 2015;3(09):38. https://doi.org/10.4236/gep.2015.39005

72. Mbow C., Van Noordwijk M., Luedeling E., Neufeldt H., Minang P.A., Kowero G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014;6:61-67. https://doi.org/10.1016/j.cosust.2013.10.014

73. Bishaw B., Neufeldt H., Mowo J., Abdelkadir A., Muriuki J., Dalle G., et al. Farmers’ strategies for adapting to and mitigating climate variability and change through agroforestry in Ethiopia and Kenya. 2013.

74. Muleta D., Assefa F., Nemomissa S., Granhall U. Composition of coffee shade tree species and density of indigenous arbuscular mycorrhizal fungi (AMF) spores in Bonga natural coffee forest, southwestern Ethiopia. For. Ecol. Manag. 2007;241(1-3):145-54.

75. Madalcho A., Tefera M. Management of traditional agroforestry practices in Gununo Watershed in Wolaita Zone, Ethiopia. For. Res. 2016;5(1):1-6. https://doi.org/10.4172/2168-9776.1000163

76. Bishaw B., Abdelkadir A. Agroforestry and community forestry for rehabilitation of degraded watersheds on the Ethiopian highlands. 2003.

77. Nair P. Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor. Syst. 2012;86:243-53. https://doi.org/10.1007/s10457-011-9434-z

78. Negash M., Kaseva J., Kahiluoto H. Perennial monocropping of khat decreased soil carbon and nitrogen relative to multistrata agroforestry and natural forest in southeastern Ethiopia. Reg. Environ. Change. 2022;22(2):38. https://doi.org/10.1007/s10113-022-01905-3

79. Gelaw A.M., Singh B., Lal R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agr. Ecosyst. Environ. 2014;188:256-63.

80. Gurmessa B., Demessie A., Lemma B. Dynamics of soil carbon stock, total nitrogen, and associated soil properties since the conversion of Acacia woodland to managed pastureland, parkland agroforestry, and treeless cropland in the Jido Komolcha District, southern Ethiopia. J. Sustain. For. 2016;35(5):324-37. https://doi.org/10.1080/10549811.2016.1175950

81. Chiemela S.N., Noulèkoun F., Chiemela C.J., Zenebe A., Abadi N., Birhane E. Conversion of degraded agricultural landscapes to a smallholder agroforestry system and carbon sequestration in drylands. Int. J. Clim. Chang. Strateg. Manag. 2018;10(3):472-87. https://doi.org/10.1108/IJCCSM-08-2015-0116

82. Dilla A.M., Smethurst P.J., Barry K., Parsons D. Preliminary estimate of carbon sequestration potential of Faidherbia albida (Delile) A. Chev in an agroforestry parkland in the Central Rift Valley of Ethiopia. Forests, Trees and Livelihoods. 2019;28(2):79-89.

83. Toru T., Kibret K. Carbon stock under major land use/land cover types of Hades sub-watershed, eastern Ethiopia. Carbon Balance Manag. 2019;14:1-14. https://doi.org/10.1186/s13021-019-0122-z

84. Gebrewahid Y., Gebre-Egziabhier T.-B., Teka K., Birhane E. Carbon stock potential of scattered trees on farmland along an altitudinal gradient in Tigray, Northern Ethiopia. Ecol. Proc. 2018;7:1-8. https://doi.org/10.1186/s13717-018-0152-6

85. Gebremeskel D., Birhane E., Rannestad M.M., Gebre S., Tesfay G. Biomass and soil carbon stocks of Rhamnus prinoides based agroforestry practice with varied density in the drylands of Northern Ethiopia. Agrofor. Syst. 2021;95(7):1275-93.

86. Hagos H, Tesfay G, Brhane E, Abrha H, Bezabh T, Tesfay B, et al. Comparison of carbon stock potential of farmland trees in the midlands of Hawzen, Northern Ethiopia. Sust. Environ. 2021;7(1):1973696. https://doi.org/10.1080/27658511.2021.1973696

87. Nair P.R., Nair V.D., Kumar B.M., Showalter J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010;108:237-307. https://doi.org/10.1016/S0065-2113(10)08005-3

88. Negash M., Starr M. Biomass and soil carbon stocks of indigenous agroforestry systems on the south-eastern Rift Valley escarpment, Ethiopia. Plant Soil. 2015;393:95-107. https://doi.org/10.1007/s11104-015-2469-6

89. Lai R. Soil carbon sequestration in natural and managed tropical forest ecosystems. J. Sustain. For. 2004;21(1):1-30.

90. Sollins P, Swanston C, Kramer M. Stabilization and destabilization of soil organic matter—a new focus. Biogeochemistry. 2007;85:1-7.


Рецензия

Для цитирования:


Биру К.Х. Вклад агролесоводства в обеспечение средств к существованию и поглощение углерода в Эфиопии. Овощи России. 2025;(6):225-232. https://doi.org/10.18619/2072-9146-2025-6-225-232

For citation:


Biru K.H. Agroforestry contribution to livelihood and Carbon sequestration in Ethiopia. Vegetable crops of Russia. 2025;(6):225-232. https://doi.org/10.18619/2072-9146-2025-6-225-232

Просмотров: 47

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)