Preview

Vegetable crops of Russia

Advanced search

Application of magnesium oxide nanoparticles to improve sweet basil (Ocimum basilicum L.) productivity in total control environment agriculture

https://doi.org/10.18619/2072-9146-2025-6-176-184

Abstract

   Relevance. The rising demand for spicy crops is driving the development of their year-round production at urban farms. Magnesium oxide nanoparticles (MgO-NPs) have great potential for use in total control environment agriculture of green crops due to their eco-friendliness and ability to stimulate growth and secondary metabolite accumulation. This study aims to determine effective MgO-NPs concentrations for stimulating growth, photosynthesis, and essential oil accumulation in sweet basil.

   Materials and Methods. MgO-NPs (6–7 nm in size), produced by laser ablation, were applied in three foliar applications, 10 days apart, beginning with the emergence of the first true leaves of sweet basil cultivar Zhigolo. Nanoparticles were used at concentrations of 25, 50, 75, 100, 150, 200, and 500 mg/l. Control plants were sprayed with distilled water. On the 60th day of cultivation, the following parameters were measured: plant height, leaf count, fresh and dry weight, total chlorophyll, anthocyanins, and essential oil content.

   Results. MgO nanoparticle treatments at concentrations of 100 and 150 mg/l increased the number of leaves by 65 and 60 %, and the fresh weight of basil plants by 55.7 and 83.4 %, respectively. Treatment at concentration of 150 mg/l contributed to an increase in plant height by 51.6 %. An increase in dry
weight was observed in all treatment variants with MgO-NP concentrations 75 mg/l and above. When using treatments of 150, 200, and 500 mg/l, the greatest reliable increase in dry mass (by 43, 56, and 37 %) and total chlorophyll content (by 38, 77, and 33 %) was observed. Maximum accumulation of essential oils (more than 2 times) was observed at concentration of 50 mg/l. The composition of essential oils also altered: the highest content of linalool was observed at 25 mg/l, eugenol – at 50 mg/l, and eucalyptol – at 75 mg/l.

About the Authors

N. A. Semenova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Natalia A. Semenova, Cand. Sci. (Agriculture), Senior Researcher

Center "Biophotonics"

119991; 38, Vavilova str.; Moscow; GSP-1



D. A. Zakharov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Dmitriy A. Zakharov, Junior Researcher

Center "Biophotonics"

119991; 38, Vavilova str.; Moscow; GSP-1

Scopus ID 57220058334; AAS-9393-2021

Scopus ID: 58672963900; Researcher ID JNR-9098-2023



E. V. Stepanova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Eugenia V. Stepanova, Cand. Sci. (Physical and Mathematical), Senior Researcher

Center "Biophotonics"

119991; 38, Vavilova str.; Moscow; GSP-1

Scopus ID: 7101888840; Researcher ID E-9553-2014



S. R. Sarimova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Sofia R. Sarimova, Laboratory Assistant

Center "Biophotonics"

119991; 38, Vavilova str.; Moscow; GSP-1



References

1. Vertical Farming Market Outlook, 2029 [researchandmarkets.com] Research and Markets, 2025 [updated October 2024, cited September 30, 2025]. Available https://www.researchandmarkets.com/reports/6061690/vertical-farming-market-outlook#src-pos-7

2. Anwar F., Alkharfy K.M., Mehmood T., Bakht M.A., Najeeb-ur-Rehman. Variation in Chemical Composition and Effective Antibacterial Potential of Ocimum basilicum L. Essential Oil Harvested from Different Regions of Saudi Arabia. Pharmaceutical Chemistry Journal. 2021;55:187–193. doi: 10.1007/s11094-021-02384-2

3. Karomatov I.D., Pulatov S.S. The medicinal properties of basil. Biology and integrative medicine. 2016;1:142-155. (In Russ.) https://elibrary.ru/wjavrf

4. Bakhmet M.P., Kas'yanov G.I. Prospects for producing food additives from the leaves and inflorescences of eugenol basil and common basil. Izvestiya vuzov. Food technology. 2021;5-6(383-384):67-72. (In Russ.) doi: 10.26297/0579-3009.2021.5-6.13 https://elibrary.ru/thpxpg

5. Tkacheva T.A., Savchenko O.M. Morpho-biological features of holy basil in greenhouse conditions. Vegetable crops of Russia. 2025;(4):108-113. (In Russ.) doi: 10.18619/2072-9146-2025-4-108-113 https://elibrary.ru/xhudra

6. Sachyuka T.V., Kovalenko N.A., Supichenko G.N., Bosak V.N. Using indicators of the essential oils composition to identify the variety. Vegetable crops of Russia. 2019;(3):68-73. (In Russ.) doi: 10.18619/2072-9146-2019-3-68-73 https://elibrary.ru/dbsuao

7. Zheljazkov V.D., Callahan A., Cantrell C.L. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. J Agric Food Chem. 2008;56(1):241-5. doi: 10.1021/jf072447y

8. Basil Leaves – Global Strategic Business Report [researchandmarkets.com] Research and Markets, 2025 [updated October 2025, cited September 30, 2025]. Available https://www.researchandmarkets.com/reports/6094789/basil-leaves-global-strategic-business-report#tag-pos-2

9. Semenova N.A., Chilingaryan N.O., Ivanitskikh A.S., Dorokhov A.A., Pavlova E.V., Uyutova N.I. Influence of the spectral composition of light and silicon-containing fertilizer siliplant on the morphological parameters of basil in closed Artificial agroecosystems. Bulletin of the Central Botanical Garden. 2021;3:25-32. (In Russ.) doi: 10.25791/BBGRAN.03.2021.1097 https://elibrary.ru/nvfoid

10. Buyisile M. Morphological and chemical composition of the essential oil of the leaf of Schistostephium heptalobium. African journal of biotechnology. 2009;8(8):1509-1519.

11. Paul B.K., Saleh-e-In M.M., Hassan S.M.M., Rahman M.Z., Saha G.C., Roy S.K. Chemical composition and biological activities of Carum roxburghianum Benth. (Radhuni) seeds of three Bangladeshi ecotypes. Journal of essential oil bearing plants. 2013;16(2):201-211. doi: 10.1080/0972060X.2013.793983

12. Er M., Tugay O., Ozcan M.M., Ulukus D., AL-Juhaimi F. Biochemical properties of some Salvia L. species. Environmental monitoring and assessment. 2013;185(6):5193-5198. doi: 10.1007/s10661-012-2935-z

13. Ahmed N., Zhang B., Bozdar B., Chachar S., Rai M., Li J., Li Y., Hayat F., Chachar Z., Tu P. The power of magnesium: unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Frontiers in Plant Science. 2023;14. doi: 10.3389/fpls.2023.1285512

14. David E., Ortiz M., Marques M., Boaro C. Physiological indexese macro- and micronutrients in plant tissue and essential oil of Mentha piperita L. grown in nutrient solution with variation in N, P, K and Mg levels. Revista Brasileira de Plantas Medicinais. 2014;16(1):97-106. doi: 10.1590/S1516-05722014000100014

15. Nemeth-Zamborine E., Szabo K., Rajhart P., Lelik L., Bernath J., Popp T. Effect of Nutrients on Drug Production and Essential Oil Content of Lemon Balm (Melissa officinalis L.). Journal of Essential Oil Bearing Plants. 2015;18(6):1508-1515. doi: 10.1080/0972060X.2014.935040

16. Lala S. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants : A review. IET nanobiotechnology. 2021;15(1):28-57. doi: 10.1049/nbt2.12005 PMID 34694730 PMCID PMC8675826

17. Currall S.C., King E.B., Lane N., Madera J., Turner S. What drives public acceptance of nanotechnology? Nature Nanotechnology. 2006;1:153-155. doi: 10.1038/nnano.2006.155

18. Salas-Leiva J.S., Luna-Velasco A., Salas-Leiva, D.E. Use of magnesium nanomaterials in plants and crop pathogens. Journal of Nanoparticle Research. 2021;23: 267. DOI: 10.1007/s11051-021-05337-8

19. Singh N., Manshian B., Jenkins G.J., Griffiths S.M., Williams P.M., Maffeis T.G., Wright C.J., Doak S.H. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30(23-24):3891-3914. doi: 10.1016/j.biomaterials.2009.04.009

20. Mahmoud A., Ezgi Ö., Merve A., Özhan G. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types. International Journal of Toxicology. 2016;35(4):429-437. doi: 10.1177/1091581816648624

21. Moeini-Nodeh S., Rahimifard M., Baeeri M., Abdollahi M. Functional improvement in rats' pancreatic islets using magnesium oxide nanoparticles through antiapoptotic and antioxidant pathways. Biological Trace Element Research. 2017;175(1):146-155. doi: 10.1007/s12011-016-0754-8

22. Hornak J. Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles : A Review. International Journal of Molecular Sciences. 2021;22(23). doi: 10.3390/ijms222312752

23. Suliman A.A., El-Dewiny C.Y., Soliman M.K.Y., Salem S.S. Investigation of the Effects of Applying Bio-Magnesium Oxide Nanoparticle Fertilizer to Moringa Oleifera Plants on the Chemical and Vegetative Properties of the Plants' leaves. Biotechnology journal. 2025;20(3):e202400536. doi: 10.1002/biot.202400536

24. Gautam A., Sharma P., Ashokhan, S., Yaacob J.S., Kumar V., Guleria P. Magnesium oxide nanoparticles improved vegetative growth and enhanced productivity, biochemical potency and storage stability of harvested mustard seeds. Environmental Research. 2023;229:116023. doi: 10.1016/j.envres.2023.116023.

25. Delfani M., Firouzabadi M.B., Farrokhi N., Makarian H. Some Physiological Responses of Black-Eyed Pea to Iron and Magnesium Nanofertilizers. Communications in Soil Science and Plant Analysis. 2014;45:530-540. doi: 10.1080/00103624.2013.863911

26. Bhattacharjee S., DLS and zeta potential – What they are and what they are not? Journal of controlled release. 2016;235:337-351. doi: 10.1016/j.jconrel.2016.06.017

27. Karamatova G.B., Safarov A.K., Ikramova Sh.Sh., Safarov K.S.Biological features of common basil (Ocimum basilicum L.) under various conditions of cultivation. International research journal. 2020;2(97):43-45. doi: 10.23670/IRJ.2020.97.7.041 https://elibrary.ru/htijmt

28. Maslennikov P., Chupakhina G., Skrypnick L., Fedurayev P., Poltavskaya R.Content of anthocyanin and carotenoid pigments in medicinal plants. Bulletin of Moscow Region State University. 2013;1:6. https://elibrary.ru/qzorvl

29. Semenova N.A., Smirnov A.A., Ivanitskikh A.S., Izmailov A.Y., Dorokhov A.S., Proshkin Y.A., Yanykin D.V., Sarimov R.R., Gudkov S.V., Chilingaryan N.O. Impact of Ultraviolet Radiation on the Pigment Content and Essential Oil Accumulation in Sweet Basil (Ocimum basilicum L.). Applied Sciences. 2022;12:7190. doi: 10.3390/app12147190

30. Amaya-Olivas N. I., Sánchez E., Hernández-Ochoa L., Ojeda-Barrios D. L., Ávila-Quezada G. D., Flores-Córdova M. A., Chávez-Flores D., Ayala-Soto J. G., Salcido-Martínez A., Ramírez-Estrada C. A. Biofortification with magnesium nanofertilizer on bioactive compounds and antioxidant capacity in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2023;51(1):12830. doi: 10.15835/nbha51112830

31. Rasheed A., Li H., Tahir M.M., Mahmood A., Nawaz M., Shah A.N., Aslam M.T., Negm S., Moustafa M., Hassan M.U., Wu Z. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress : A review. Front Plant Sci. 2022;13:976179. doi: 10.3389/fpls.2022.976179

32. Moynier F., Fujii T. Theoretical isotopic fractionation of magnesium between chlorophylls. Scientific Reports. 2017;7:6973. doi: 10.1038/s41598-017-07305-6

33. Kaleem M., Shah A.A., Usman S., Xu W., Alsahli A.A. Magnesium Oxide Nanoparticles Improved Drought Resilience in Coriandrum sativum L. through Lifting Antioxidant Level, Redox Balancing, and Improving Photosynthetic Efficiency. ACS Omega. 2025;10(30):32813-32828. doi: 10.1021/acsomega.5c00986

34. Delfani M., Firouzabadi M.B., Farrokhi N., Makarian H.. Some Physiological Responses of Black-Eyed Pea to Iron and Magnesium Nanofertilizers. Communications in Soil Science and Plant Analysis. 2014;45:530-540. doi: 10.1080/00103624.2013.863911

35. Pandey M., Srivastava A.K., Suprasanna P., D’Souza S.F. Thiourea mediates alleviation of UV-B stress-induced damage in the Indian mustard (Brassica juncea L.). Journal of Plant Interactions. 2012;7:143–150.

36. Jan R., Asif S., Asaf S., Lubna, Khan Z., Kim K.-M. Unveiling the protective role of anthocyanin in rice: insights into drought-induced oxidative stress and metabolic regulation. Frontiers in Plant Science. 2024;15:1397817. doi: 10.3389/fpls.2024.1397817

37. Zheljazkov V.D., Cantrell C.L., Evans W.B., Ebelhar M.W., Coker C.E. Yield and Composition of Ocimum basilicum L. and Ocimum sanctum L. Grown at Four Locations. Hortscience. 2008;43:737-741. doi: 10.21273/HORTSCI.43.3.737

38. Gohari G., Panahirad S., Mohammadi A, Kulak M., Dadpour M.R., Lighvan Z.M., Sharifi S., Eftekhari-Sis B, Szafert S., Fotopoulos V., Akbari A. Characterization of Octa-aminopropyl polyhedral oligomeric silsesquioxanes (OA-POSS) nanoparticles and their effect on sweet basil (Ocimum basilicum L.) response to salinity stress. Plant Physiol Biochem. 2023;196:89-102. doi: 10.1016/j.plaphy.2023.01.019.

39. Nazir S., Jan H., Zaman G., Khan T., Ashraf H., Meer B., Zia M., Drouet S., Hano C., Abbasi B.H. Copper oxide (CuO) and manganese oxide (MnO) nanoparticles induced biomass accumulation, antioxidants biosynthesis and abiotic elicitation of bioactive compounds in callus cultures of Ocimum basilicum (Thai basil). Artificial Cells, Nanomedicine, and Biotechnology. 2021;49(1):625-633. doi: 10.1080/21691401.2021.1984935


Review

For citations:


Semenova N.A., Zakharov D.A., Stepanova E.V., Sarimova S.R. Application of magnesium oxide nanoparticles to improve sweet basil (Ocimum basilicum L.) productivity in total control environment agriculture. Vegetable crops of Russia. 2025;(6):176-184. (In Russ.) https://doi.org/10.18619/2072-9146-2025-6-176-184

Views: 103

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)