Pathogen virulence factors as a basis for development methods and strategies to control plant disease on the example of fire blight on apple trees (review)
https://doi.org/10.18619/2072-9146-2025-6-138-145
Abstract
Relevance. The analysis of domestic and foreign literature has demonstrated the wide distribution and harmfulness of Erwinia amylovora (Burrill.) Winslow et al., the causative agent of fire blight of fruit crops, including apple trees. The disease causes significant damage to agricultural production.
Results. To date, the disease has been identified in more than 50 countries worldwide. The pathogen affects about 200 species of the Rosaceae family, causing drying out of individual organs followed by death of the entire plant. The high level of virulence of the bacterium is provided by a number of physiological features. E. amylovora is equipped with a secretion system of type III effector proteins, which allows it to deliver them directly to the host cell. Also, the production of exopolysaccharides, lipopolysaccharides, cell motility and other properties help the bacterium to colonize host plants. The ability to control these virulence factors will reduce the ability of the bacterium to cause fire blight on fruit crops. From this point of view, disease control methods based on creating conditions for incompatible interactions between the host plant and the pathogen are promising. This approach is based on an in-depth understanding of the mechanism of E. amylovora pathogenesis. In this regard, information is needed on the virulence factors of the bacterium and the features of the plant immune response responsible for establishing the relationship between the parasite and the host.
Conclusion. This review contains material on a number of areas related to the causative agent of fire blight of fruit crops E. amylovora. The issues of the geographical distribution of the bacterium are covered; the range of host plants is determined; the biological characteristics of E. amylovora are given; the symptoms of the disease it causes are described; virulence factors that are most significant for ensuring plant protection from the disease under study are identified. Theoretical and practical achievements in the field of genetics, molecular biology, plant physiology, and microbiology are considered, which are of great importance for the integration of modern biotechnologies in order to increase the effectiveness of fight against fire blight of fruit crops.
Keywords
About the Authors
M. V. MaslovaRussian Federation
Marina V. Maslova, Cand. Sci. (Agriculture), Leading Researcher
Laboratory of Molecular Genetic Analysis of Fruit Plants
101, Internatsionalnaya Street; Tambov Region; Michurinsk
Researcher ID E-4506-2015
I. N. Shamshin
Russian Federation
Ivan N. Shamshin, Cand. Sci. (Biology), Head of the Laboratory
Laboratory of Molecular Genetic Analysis of Fruit Plants
101, Internatsionalnaya Street; Tambov Region; Michurinsk
Scopus ID: 56708633300; Researcher ID: AAZ-9047-2021
N. V. Drenova
Russian Federation
Natalia V. Drenova, Senior Researcher
Scientific and Methodological Department of Bacteriology
Moscow Region; Ramenskoyet; Bykovo
M. L. Dubrovsky
Russian Federation
Maxim L. Dubrovsky, Cand. Sci. (Agriculture), Head of the Laboratory
Laboratory of Selection of Dwarf Clonal Rootstocks and Other Crops
101, Internatsionalnaya Street; Tambov Region; Michurinsk
Scopus ID: 57204561635
References
1. Ignatov A.N., Egorova M.S., Khodykina M.V. Spread of bacterial and phytoplasma plant diseases in Russia. Plant protection and quarantine. 2015;(5):6-9. (In Russ.) https://elibrary.ru/trkkdp
2. Karimova E.V., Shneider Yu.A., Smirnova I.P., Pakina E.N., Astarkhanova T.S. Phytopathogenic bacteria Erwinia amylovora and Acidovorax citrulli and analysis of their phytosanitary risk. Development problems of regional agro-industrial complex. 2019;(4):71-77. (In Russ.) https://elibrary.ru/hwyxog
3. Drenova N.V., Kondratyev M.O., Kharchenko A.A., Tsymbal Yu.S., Sukholozova E.A., Kvashnina N.A., Dzhalilov F.S. Rowan (Sorbus spp.) as a potential host plant of the causative agent of bacterial blight of fruit crops (Erwinia amylovora) in the Russian Federation. Phytosanitary. Plant quarantine. 2020;4(4):46-64. (In Russ.) doi: 10.69536/fkr.2020.12.82.001 https://elibrary.ru/rdszjb
4. Gorovik Yu.N., Lagonenko A.L., Evtushenkov A.N., Kukharchik N.V. Evaluation of resistance of clonal apple rootstocks to bacterial blight in vitro culture. Fruit growing. 2022;30(1):34-38. (In Russ.) https://elibrary.ru/mahhjm
5. Malakhova N.P., Skiba Yu.A., Tezekbaeva B.K., Khasein A., Dmitrieva K.D., Romashkin V.N., Zharmukha-Medova G.A., Dzhumanova Zh.K., Maltseva E.R. Prevalence of Erwinia amylovora on wild and cultivated apple trees of the genus Malus spp. for the period of 2021. Eurasian Journal of Applied Biotechnology. 2022;(2):62-71. (In Russ.) doi: 10.11134/btp.2.2022.9 https://elibrary.ru/oamocs
6. Pesotskaya K. Yu., Lagonenko A. L., Evtushenkov A. N. Effect of OHRR gene deletion on the production of virulence factors by phytopathogenic bacteria Erwinia amylovora. Molecular and Applied Genetics. 2023;34:109-120. (In Russ.) https://elibrary.ru/dntxbf
7. Guliyeva Z.M. Methods for determining bacterial blight on pome crops in the western part of Azerbaijan. Bulletin of Science and Practice. 2024;10(2):105-114. doi: 10.33619/2414-2948/99/13 (In Russ.)
8. Drenova N.V. Dzhalilov F.S. Sviridova L.A. Prospects for expanding the range of host plants of the causative agent of bacterial blight of fruit crops Erwinia amylovora in the Russian Federation. Proc. of the 10<sup>th</sup> international scientific and practical conference "Protection of plants from pests", Krasnodar. 2021:124-126 (In Russ.) https://elibrary.ru/zvyebo
9. Sadanov A.K., Suleimenova Zh.B., Ismailova E.T., Shemshura O.N., Baimakhanova B.B., Baimakhanova G.B., Bisko N.A., Molzhigitova E., Elubaeva A.E., Tleubekova D.A., Kondratiev M.O. Bacterial burn of fruit crops. Microbiology and Virology. 2023;40(1):35-46. (In Russ.) doi: 10.53729/MV-AS.2023.01.02
10. Alexandrov I.N. Bacterial blight of fruit crops in the Russian Federation. Historical background. Plant protection and quarantine. 2009;(12):26-29 (In Russ.) https://elibrary.ru/kxwfoz
11. Sobiczewski P., Iakimova E. T., Mikiciński A., Węgrzynowicz-Lesiak E., Dyki B. Necrotrophic behaviour of Erwinia amylovora in apple and tobacco leaf tissue. Plant Pathology. 2017;66(5):842-855. doi: 10.1111/ppa.12631
12. Piqué N., Miñana-Galbis D., Merino S., Tomás J. M. Virulence factors of Erwinia amylovora : a review. International journal of molecular sciences. 2015;16(6):12836-12854. doi: 10.3390/ijms160612836
13. Rezzonico F., Emeriewen O. F., Zeng Q., Peil A., Smits T. H., Sundin G. W. Burning questions for fire blight research: I. Genomics and evol.tion of Erwinia amylovora and analyses of host-pathogen interactions. Journal of Plant Pathologyю. 2024: 797-810. doi: 10.1007/s42161-023-01581-0
14. Balaž J., Radunović D., Krstić M. Status of Erwinia amylovora in Montenegro. International Symposium on Current Trends in Plant Protection with esenias workshop - Managing Invasive Alien Species in se countries: the way ahead, 25-28 septembar 2012, Beograd. 2012:373-378.
15. Evrenosoğlu Y., Misirli A., Saygili H., Bilen E., Boztepe Ö., Acarsoy, N. Evaluation of susceptibility of different pear hybrid populations to fire blight (Erwinia amylovora). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2011;39(1):226-236.
16. Pedroncelli A., Puopolo G. This tree is on fire: a review on the ecology of Erwinia amylovora, the causal agent of fire blight disease. Journal of Plant Pathology. 2023:823-837. doi: 10.1007/s42161-023-01397-y
17. Emeriewen O.F., Wöhner T., Flachowsky H., Peil A. Malus hosts Erwinia amylovora interactions: strain pathogenicity and resistance mechanisms. Frontiers in plant science. 2019;10:551. doi: 10.3389/fpls.2019.00551
18. Yuan X., Sundin G.W., Zeng Q., Johnson K.B., Cox K.D., Yu M., Yang C.H. Erwinia amylovora type III secretion system inhibitors reduce fire blight infection under field conditions. Phytopathology®. 2023;113(12):2197-2204. doi: 10.1094/PHYTO-04-23-0111-SA
19. Mendes R.J., Luz J.P., Santos C., Tavares F. CRISPR genotyping as complementary tool for epidemiological surveillance of Erwinia amylovora outbreaks. PLoS One. 2021;16(4):e0250280. doi: 10.1371/journal.pone.0250280
20. Rezzonico F., Smits T.H.M., Duffy B. Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Applied and Environmental Microbiology. 2011;77(11):3819-3829. doi: 10.1128/AEM.00177-11
21. Zeng Q., Slack S., Amine Hassani M. Pathogen Spotlight on Erwinia amylovora Recent Advances in Genomics, Resistance Breeding, and Disease Management. Phytopathology. 2023;113(12):2140-2142. doi: 10.1094/PHYTO-11-23-0439-SA
22. Klee S.M., Sinn J.P., Christian E., Holmes A.C., Zhao K., Lehman B.L., Mc Nellis T.W. Virulence genetics of an Erwinia amylovora putative polysaccharide transporter family member. Journal of bacteriology. 2020;202(22):e00390-20. doi: 10.1128/jb.00390-20
23. Kałużna M., Puławska J., Mikiciński A. Evaluation of methods for Erwinia amylovora detection. Journal of Horticultural Research. 2013;21(2):65-71. doi: 10.2478/johr-2013-0023
24. Pirc M., Ravnikar M., Tomlinson J., Dreo J. Improved fireblight diagnostics using quantitative real-time PCR detection of Erwinia amylovora chromosomal DNA. Plant Pathology. 2009;58:872-881. doi: 10.1111/j.1365-3059.2009.02083.x
25. Mager M.G. Application of diagnostic nutrient media for identification of the phytopathogen E. amylovora. Fruit and berry growing in Russia. 2013;36(2):9-15. (In Russ.) https://elibrary.ru/pwwjkl
26. Jin Y.J., Lee S.Y., Kong H.G., Yang S.I., Ham H., Lee M.H., Park D.S. Novel detection and quantification approach of Erwinia amylovora in vitro and in planta using SYBR green-based real-time PCR assay. Plant Disease. 2023;107(3):624-627. doi: 10.1094/PDIS-05-22-1227-SC
27. Brurberg M. B., Elameen A., Sletten A., Rossmann S. L. Genetic characterization of historic Norwegian Erwinia amylovora isolates by SSR-genotyping. Journal of Plant Pathology. 2024;106:987-996. doi: 10.1007/s42161-024-01596-1
28. Pesotskaya K.Yu., Lagonenko A.L., Evtushenkov A.N. Pleiotropic effect of mutation in the genes of lipopolysaccharide biosynthesis of phytopathogenic bacteria Erwinia amylovora. Molecular and Applied Genetics. 2021;30:31-38. (In Russ.) doi: 10.47612/1999-9127-2021-30-31-38 https://elibrary.ru/gbbhsy
29. Kudina I.V., Gorovik Yu.V., Lagonenko A.L., Evtushenkov A.N. Characteristics of the virulence properties of Erwinia amylovora strains. Microbial biotechnology: fundamental and applied aspects. 2018:91-98. (In Russ.) https://elibrary.ru/ihytbq
30. Baştaş K.K., Gedük A. Effected proteins in apple and Erwinia amylovora. Turkish Journal of Agriculture - Food Science and Technology. 2020;(8):215-225. doi: 10.24925/turjaf.v8isp1.215-225.3923
31. Oh C.S., Beer S.V. Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiology Letters. 2005;253(2):185-192. doi: 10.1016/j.femsle.2005.09.051
32. Khan M.A., Durel C.E., Duffy B., Drouet D., Kellerhals M., Gessler C., Patocchi A. Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome. 2007;6(50):568-577. doi: 10.1139/G07-033
33. Kim J.F., Beer S.V. Hrp genes and harpins of Erwinia amylovora: a decade of discovery. Fire blight and its causative agent Erwinia amylovora. 2000:141-162. doi: 10.1079/9780851992945.0000
34. Castiblanco L.F., Triplett L.R., Sundin G.W. Regulation of effector delivery by type III secretion chaperone proteins in Erwinia amylovora. Frontiers in Microbiology. 2018;9:146. doi: 10.3389/fmicb.2018.00146
35. Schröpfer S., Vogt I., Broggini G.A.L., Dahl A., Richter K., Hanke M.V., Peil A. Transcriptional profile of AvrRpt2 EA-mediated resistance and susceptibility response to Erwinia amylovora in apple. Scientific reports. 2021;11(1):8685. doi: 10.1038/s41598-021-88032-x
36. Yuan X., McGhee G. C., Slack S. M., Sundin G. W. A novel signaling pathway connects thiamine biosynthesis, bacterial respiration, and production of the exopolysaccharide amylovoran in Erwinia amylovora. Molecular Plant - Microbe Interactions. 2021;34(10):1193-1208. doi: 10.1094/MPMI-04-21-0095-R
37. Carlini L., Esposito A., Ambrosino L., Bharti S., Invernizzi L. M., Piazza S., Benini S. The ams proteins and the amylovoran biosynthetic pathway: an extensive bioinformatic study. Journal of Plant Pathology. 2024;106(3):997-1010. doi: 10.1007/s42161-023-01532-9
38. Du Z., Jakovljevic V., Salm H., Geider K. Creation and genetic restoration of Erwinia amylovora strains with low levan synthesis. Physiological and molecular plant pathology. 2004;65(3):115-122. doi: 10.1016/j.pmpp.2004.12.003
39. Öner E.T., Hernández L., Combie J. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnology advances. 2016;34(5):827-844. doi: 10.1016/j.biotechadv.2016.05.002
40. Pesotskaya K.Yu., Lagonenko A.L., Evtushenkov A.N. Study of the role of the transcriptional regulator MARR in the virulence of phytopathogenic bacteria Erwinia amylovora. Molecular and Applied Genetics. 2021;31:53-61 (In Russ.) doi: 10.47612/1999-9127-2021-31-53-61 https://elibrary.ru/mnkzeo
41. Fontana R., Macchi G., Caproni A., Sicurella M., Buratto M., Salvatori F., Marconi P. Control of Erwinia amylovora growth by Moringa oleifera leaf extracts: In vitro and in planta effects. Plants. 2022;11(7):957. doi: 10.3390/plants11070957
42. Schachterle J.K., Gdanetz K., Pandya I., Sundin G.W.. Identification of novel virulence factors in Erwinia amylovora through temporal transcriptomic analysis of infected apple flowers under field conditions. Molecular Plant Pathology. 2022;23(6):855-869. doi: 10.1111/mpp.13199
43. Choi J.H., Kim J.Y., Park D.H. Evidence of greater competitive fitness of Erwinia amylovora over E. pyrifoliae in Korean isolates. The Plant Pathology Journal. 2022;38(4):355. doi: 10.5423/PPJ.OA.04.2022.0056
44. Polsinelli I., Borruso, L., Caliandro R., Triboli L., Esposito A., Benini S. A genome-wide analysis of desferrioxamine mediated iron uptake in Erwinia spp. reveals genes exclusive of the Rosaceae infecting strains. Scientific Reports. 2019;9(1):2818. doi: 10.1038/s41598-019-39787-x
45. Kharadi R.R., Schachterle J.K., Yuan X., Castiblanco L. F., Peng J., Slack S. M., Sundin G. W. Genetic dissection of the Erwinia amylovora disease cycle. Annual review of phytopathology. 2021;59(1):191-212. doi: 10.1146/annurev-phyto-020620-095540
46. Shafikova T.N., Omelichkina Yu.V. Molecular and genetic aspects of plant immunity to phytopathogenic bacteria and fungi. Plant Physiology. 2015;62(5):611-611. doi: 10.7868/S0015330315050140 https://elibrary.ru/udesrh
47. Shamrai S.N. Immune system of plants: basal immunity. Cytology and Genetics. 2014;48.(4):67-82.
48. He L.L., Wang X., Rothenberg D. O. N., Xu X., Wang H. H., Deng X., Cui Z. N. A novel strategy to control Pseudomonas syringae through inhibition of type III secretion system. Pesticide Biochemistry and Physiology. 2023;194:105471. doi: 10.1016/j.pestbp.2023.105471
49. Zhao Y., He S.-Y., Sundin G.W. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Molecular plant-microbe interactions. 2006;19(6):644-654. doi: 10.1094/MPMI-19-0644.
50. Lee S. Y., Kong H. G., Kang I. J., Oh H., Woo H. J., Roh E. Identification of virulence-associated genes of Erwinia amylovora by transposon mutagenesis. Korean Journal of Agricultural Science. 2023;50(2):241-247.
51. Ham H., Oh G.R., Park D.S. Genomic Data Analysis of the Nonpathogenic Erwinia amylovora Strain CP200242 Isolated from an Asian Pear Tree. PhytoFrontiers™. 2023;3(3):747-752. doi: 10.1094/PHYTOFR-12-22-0146-A
52. Pun M., Khazanov N., Galsurker O., Weitman M., Kerem Z., Senderowitz H., Yedidia I. Phloretin, an apple phytoalexin, affects the virulence and fitness of Pectobacterium brasiliense by interfering with quorum-sensing. Frontiers in Plant Science. 2021;12:671807. doi: 10.3389/fpls.2021.671807
53. Korba J., Šillerová J., Kůdela V. Resistance of apple varieties and selections to Erwinia amylovora in the Czech Republic. Plant Protection Science. 2008;44(3):91-96.
54. Emeriewen O.F., Richter K., Flachowsky H., Malnoy M., Peil A. Genetic analysis and fine mapping of the fire blight resistance locus of Malus× arnoldiana on linkage group 12 reveal first candidate genes. Frontiers in Plant Science. 2021;12:667133. doi: 10.3389/fpls.2021.667133
55. Kellerhals M., Franck L., Baumgartner I. O., Patocchi A., Frey J. E. Breeding for fire blight resistance in apple. XII International Workshop on Fire Blight. 2010:385-389. doi: 10.17660/ActaHortic.2011.896.55
56. Calenge F., Drouet D., Denancé C., Van de Weg W.E., Brisset M. N., Paulin J. P., Durel, C. E. Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theoretical and Applied Genetics. 2005;111:128-135. doi: 10.1007/s00122-005-2002-z
57. Peil A., Hanke M.-V., Flachowsky H., Garcia-Libreros T., Horner M. Bus V. Confirmation of the fire blight QTL of Malus robusta 5 on linkage group 3. Acta Hort. 2008;793:297-303. doi: 10.17660/ActaHortic.2008.793.44
58. Durel C.E., Denance C., Brisset M.N. Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome. 2009;52(2):139-147. doi: 10.1139/G08-111
59. Le Roux P. M., Khan M. A., Broggini G. A., Duffy B., Gessler C., Patocchi A. Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’ and ‘Nova Easygro’. Genome. 2010;53(9):710-722. doi: 10.1139/G10-047
60. Kairova G., Daulet N., Solomadin M., Sandybayev N., Orkara S., Beloussov V., Sapakhova Z. Identification of Apple Varieties Resistant to Fire Blight (Erwinia amylovora) Using Molecular Markers. Horticulturae. 2023;9(9):1000. doi: 10.3390/horticulturae9091000
61. Kairova G., Pozharskiy A., Daulet N., Solomadin M., Sandybayev N., Khusnitdinova M., Gritsenko D. Evaluation of Fire Blight Resistance of Eleven Apple Rootstocks Grown in Kazakhstani Fields. Applied Sciences. 2023;13(20):11530. doi: 10.3390/app132011530
62. Lyzhin A., Saveleva N. Identification of QTL FBF7 fire blight resistance in apple varieties germplasm. BIO Web of Conferences. EDP Sciences. 2021;34:02002. doi: 10.1051/bioconf/20213402002
63. Lyzhin A.S., Saveleva N.N. Occurrence of the FBF7 fire blight resistance locus in accessions of apple wild species (Malus Mill.). Proceedings on applied botany, genetics and breeding. 2023;184(4):133-142. (In Russ.) doi: 10.30901/2227-8834-2023-4-133-142 https://www.elibrary.ru/epfsmo
64. Drenova N.V., Shamshin I.N., Dubrovsky M.L. Marking QTL resistance to fire blight in apple varieties and hybrids. Fruit and Berry Growing of Russia. 2019;(59):219-226. (In Russ.) doi: 10.31676/2073-4948-2019-59-219-226 https://www.elibrary.ru/efbvwi
Review
For citations:
Maslova M.V., Shamshin I.N., Drenova N.V., Dubrovsky M.L. Pathogen virulence factors as a basis for development methods and strategies to control plant disease on the example of fire blight on apple trees (review). Vegetable crops of Russia. 2025;(6):138-145. (In Russ.) https://doi.org/10.18619/2072-9146-2025-6-138-145
JATS XML

































