Preview

Vegetable crops of Russia

Advanced search

Molecular genetics and multi-omics technologies in plant breeding

https://doi.org/10.18619/2072-9146-2025-6-26-33

Abstract

   Relevance. Progress in plant molecular genetics and multi-omics technology is driven by advancements in high-throughput sequencing, chromosome scaffold genome assembly, bioinformatics skills and genome editing which deepen our understanding of plant biology and improve crop breeding. The fundamentals of plant breeding involve recombination as a key genetic process to create new, superior plant varieties with desirable traits like higher yield, improved quality, and resistance to pests and diseases. Modern computational methodologies facilitate the effective synthesis and interpretation of multi-omics data. Challenges remain in applying new techniques to a wider range of crops.

   The aim of this review is to draw the attention of plant breeders to the latest advances in molecular genetics and omics technologies for improving plant breeding.

   Results. This review examines recently published articles in high-ranking international journals that make important contributions to expanding and refining our knowledge and significantly advance cutting-edge research. The review includes articles on the successful application of multi-omics to plant breeding, which yielded promising results in identifying key genes and regulatory elements underlying stress tolerance, crop yield, and seed production. A detailed analysis of the development of markers for types of cytoplasmic male sterility based on high-resolution melting (HRM) is given. This review highlights original experimental approaches aimed at studying the control of recombination localization for the successful introgression of valuable genes in interspecific hybridization programs.

   Conclusion. The strategy for the further development of plant breeding will focus on integrating omics technologies, genome editing, and artificial intelligence in bioinformatics. Moreover, the integration of genome editing and an in-depth study of meiotic recombination could facilitate crossovers at target sites within gametes. All efforts to improve the accuracy and speed of plant breeding serve the main goal of ensuring the abundance and diversity of plant foods.

About the Author

L. I. Khrustaleva
Russian State Agrarian University-Moscow Timiryazev Agricultural Academy (RSAU-MTAA); All-Russian Research Institute of Agricultural Biotechnology
Russian Federation

Ludmila I. Khrustaleva, Dr. Sci. (Biology), professor

127550; 49, Timiryazevskaya Str.; Timiryazevskay 42 Str.; Moscow



References

1. Almogy G., Pratt M., Oberstrass F., Lee L., Mazur D., Beckett N., Barad O., Soifer I., Perelman E., Etzioni Y., et al. Cost efficient whole genome-sequencing using novel mostly natural sequencing-by-synthesis chemistry and open fluidics platform. Biorxiv 2022. doi: 10.1101/2022.05.29.493900

2. Shirasawa K., Harada D., Hirakawa H., Isobe S., Kole C. Chromosome-level de novo genome assemblies of over 100 plant species. Breed. Sci. 2021;(71):117–124. doi: 10.1270/jsbbs.20146

3. Appels R., Eversole K., Feuille C., Keller B., Rogers J., Stein N. The International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;(361):10–1126. doi: 10.1126/science.aar7191

4. Sun X., Zhu S., Li N., Cheng Y., Zhao J., Qiao X., Lu L., Liu S., Wang Y., Liu C., et al. A chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and allicin biosynthesis. Mol. Plant. 2020;(13):1328–1339. doi: 10.1016/j.molp.2020.07.019

5. Ermolaev A., Kudryavtseva N., Pivovarov A., Kirov I., Karlov G., Khrustaleva L. Integrating Genetic and Chromosome Maps of Allium cepa: From Markers Visualization to Genome Assembly Verification. Int. J. Mol. Sci. 2022;(23):10486. doi: 10.3390/ ijms231810486

6. Khrustaleva L.I., Kik C. Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. The Plant Journal. 2001;25(6): 699-707. doi: 10.1046/j.1365-313x.2001.00995.x

7. Fierst J.L. Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools. Front. Genet. 2015;(6):220. doi: 10.3389/fgene.2015.00220

8. Maccaferri M., Harris N.S., Twardziok S.O., Pasam R.K., Gundlach H., Spannagl M., Ormanbekova D., Lux T., Prade V.M., Milner S.G., et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019;(51):885–895.

9. Walve R., Rastas P., Salmela L. Kermit: Linkage map guided long read assembly. Algorithms Mol. Biol. 2019;(14):1–10. doi: 10.1186/s13015-019-0143-x

10. Wu H., Yao D., Chen Y., Yang W., Zhao W., Gao H., Tong C. De novo genome assembly of Populus simonii further supports that Populus simonii and Populus trichocarpa belong to different sections. G3 Genes Genomes Genet. 2020;(10):455–466. doi: 10.1534/g3.119.400913

11. Koo D.H., Jo S.H., Bang J.W., Park H.M., Lee S., Choi D. Integration of cytogenetic and genetic linkage maps unveils the physical architecture of tomato chromosome 2. Genetics. 2008;(179):1211–1220. doi: 10.1534/genetics.108.089532

12. Szinay D., Chang S.B., Khrustaleva L., Peters S., Schijlen E., Bai Y., Stiekema W.J., Van Ham R.C., De Jong H., Klein Lankhorst R.M. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J. 2008;(56):627–637. doi: 10.1111/j.1365-313X.2008.03626.x

13. Ren Y., Zhao H., Kou Q., Jiang J., Guo S., Zhang H., Hou W., Zou X., Sun H., Gong G., et al. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS ONE. 2012;(7):e29453. doi: 10.1371/journal.pone.0029453

14. Finkers R., van Kaauwen M., Ament K., Burger-Meijer K., Egging R., Huits H., Kodde L., Kroon L., Shigyo M., Sato S., et al. Insights from the first genome assembly of Onion (Allium cepa). G3. 2021;(11):jkab243. doi: 10.1093/g3journal/jkab243

15. Sheare L.A., Anderson, L.K., de Jong H., Smit S., Goicoechea J.L., Roe B.A., Hua A., Giovannoni J.J., Stack S.M. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 Genes Genomes Genet. 2014;(4):1395–1405. doi: 10.1534/g3.114.011197

16. Mackay J.F., Wright C.D., Bonfiglioli R.G. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: Application to the verification of grapevine and olive cultivars. Plant Methods 2008;(4):1–10. https://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-4-8

17. Vossen R.H., Aten E., Roos A., den Dunnen J.T. High-Resolution Melting Analysis (HRMA)—More than just sequence variant screening. Hum. Mutat. 2009;(30):860–866. doi: 10.1002/humu.21019

18. Khrustaleva L., Nzeha M., Ermolaev A., Nikitina E., Romanov V. Two-Step Identification of N-, S-, Rand T-Cytoplasm Types in Onion Breeding Lines Using High-Resolution Melting (HRM)-Based Markers. Int. J. Mol. Sci. 2023;(24):1605. doi: 10.3390/ijms24021605

19. Horn R., Gupta K.J., Colombo N. Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion. 2014;(19):198–205. doi: 10.1016/j.mito.2014.04.004

20. Luo D., Xu H., Liu Z., Guo J., Li H., Chen L., Fang C., Zhang Q., Bai M., Yao N., et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 2013;(45):573–577.

21. Chen L., Liu Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014;(65):579–606. doi: 10.1146/annurev-arplant-050213-040119

22. Kozik A., Rowan B.A., Lavelle D., Berke L., Schranz M.E., Michelmore R.W., Christensen A.C. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet. 2019;(15):e1008373. doi: 10.1371/journal.pgen.1008373

23. Tuteja R., Saxena R.K., Davila J., Shah T., Chen W., Xiao Y.L., Fan G., Saxena K., Alverson A.J., Spillane C., et al. Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes. DNA Res. 2013;(20):485–495. doi: 10.1093/dnares/dst025

24. Jones H. A male sterile onion. Proc. Am. Soc. Hort. Sci. 1936;(34):582–585.

25. Jones H.A. Inheritance of male sterility in the onion and the production of hybrid seed. Proc. Am. Soc. Hort. Sci. 1943;(43, 189–194.

26. Berninger B. Contribution to the study of male sterility in the onion (Allium cepa L.). Ann. Amelior. Plant. 1965;(15):183–199.

27. Havey M. The cytoplasms of sterile lines used to produce commercial hybrid-onion seed. Allium Improv. Nwsl 1994;(4):25–27

28. De Courcel A., Vedel F., Boussac J. DNA polymorphism in Allium cepa cytoplasms and its implications concerning the origin of onions. Theor. Appl. Genet. 1989;(77):793–798.

29. Havey M.J., Kim S. Molecular marker characterization of commercially used cytoplasmic male sterilities in onion. J. Am. Soc. Hortic. Sci. 2021;(146):351–355. doi: 10.21273/JASHS05083-21

30. Kim B., Kim S. Identification of a variant of CMS-T cytoplasm and development of high resolution melting markers for distinguishing cytoplasm types and genotyping a restorer-of-fertility locus in onion (Allium cepa L.). Euphytica. 2019;(215):1–11. doi: 10.1007/s10681-019-2492-4

31. Kim S., Kim C.W., Park M., Choi D. Identification of candidate genes associated with fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L.) using a combination of bulked segregant analysis and RNA-seq. Theor. Appl. Genet. 2015;(128):2289-2299. doi: 10.1007/s00122-015-2584-z

32. Kudryavtseva N., Ermolaev A., Pivovarov A., Simanovsky S., Odintsov S., Khrustaleva L. The Control of the Crossover Localization in Allium. Int. J. Mol. Sci. 2023;(24):7066. doi: 10.3390/ijms24087066

33. Currah L., Maude R.B. Laboratory tests for leaf resistance to Botrytis squamosa in onions. Ann Appl Biol. 1984;(105):277-283. doi: 10.1111/j.1744-7348.1984.tb03051.x

34. Netzer D., Rabinowitch H.D., Weintal Ch. Greenhouse technique to evaluate pink root disease caused by Pyrenochaeta terrestris. Euphytica. 1985;(34):385-391.

35. Galvan G.A., Wietsma W.A., Putrasemedja S., Permadi A.H., Kik C. Screening for resistance to anthracnose (Colletotrichum gloeosporioides Penz.) in Allium cepa and its wild relatives. Euphytica. 1997;(95):173-178.

36. Ponti de O.M.B., Inggamer H. Resistance to the onion fly in Allium cepa and Allium fistulosum. In: van der Meer Q.P. (ed) Proc 3<sup>rd</sup> Eucarpia Allium Symp. PUDOC Wageningen, The Netherlands, 1984. pp 21-23.

37. Meer van der Q.P., Bennekom van J.L. Improving the onion crop (Allium cepa L.) by transfer of characters from Allium fistulosum L. Biul Warzywniczy. 1978;(22):87-91.

38. Emsweller S., Jones H. Meiosis in Allium fistulosum, Allium cepa, and their hybrid. Hilgardia. 1935;(9):275-294.

39. Huang X., Liu L., Qiang X., Meng Y., Li Z., Huang F. Integrated Multi-Omics Analysis to Reveal the Molecular Mechanisms of Inflorescence Elongation in Medicago sativa. Int. J. Mol. Sci. 2024;(25):6497. doi: 10.3390/ijms25126497

40. Gao P., Han R., Xu H., Wei Y., Yu Y. Identification of MATE Family and Characterization of GmMATE13 and GmMATE75 in Soybean’s Response to Aluminum Stress. Int. J. Mol. Sci. 2024;(25):3711. doi: 10.3390/ijms25073711

41. Liu C., Cheng H., Wang S., Yu D., Wei Y. Physiological and Transcriptomic Analysis Reveals That Melatonin Alleviates Aluminum Toxicity in Alfalfa (Medicago sativa L.). Int. J. Mol. Sci. 2023;(24):17221. doi: 10.3390/ijms242417221

42. Song K., Li B., Li H., Zhang R., Zhang X., Luan R., Liu Y., Yang L. The Characterization of G-Quadruplexes in Tobacco Genome and Their Function under Abiotic Stress. Int. J. Mol. Sci. 2024;(25):4331. doi: 10.3390/ijms25084331

43. Bradbury A., Clapp O., Biacsi A.S., Kuo P., Gaju O., Hayta S., Zhu J.K., Lambing C. Integrating genome editing with omics, artificial intelligence, and advanced farming technologies to increase crop productivity. Plant Commun. 2025;(6):101386. doi: 10.1016/j.xplc.2025.101386

44. Altpeter F., Baisakh N., Beachy R., Bock R., Capell T., Christou P., Daniell H., Datta K., Datta S., Dix P.J., et al. Advancing crop transformation in the era of genome editing. Plant Cell. 2016;(28):1510–1520. doi: 10.1105/tpc.16.00196

45. Kausch A.P., Nelson-Vasilchik K., Hague J., Mookkan M., Quemada H., Dellaporta S., Fragoso C., Zhang Z.J. Edit at will: genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Sci. 2019;(281):186-205. doi: 10.1016/j.plantsci.2019.01.006

46. Chen K., Wang Y., Zhang R., Zhang H., Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019;(70):667-697. doi: 10.1146/annurev-arplant-050718-100049

47. Nasti R.A., Voytas D.F. Attaining the promise of plant gene editing at scale. Proc. Natl. Acad. Sci. U.S.A. 2021;(118):e2004846117. doi: 10.1073/pnas.2004846117

48. Weiss T., Kamalu M., Shi H., Li Z., Amerasekera J., Zhong Z., Adler B.A., Song M.M., Vohra K., Wirnowski G., Chitkara S. et al. Viral delivery of an RNA-guided genome editor for transgene-free germline editing in Arabidopsis. Nat. Plants. 2025;(11):967–976.

49. Bradamante G., Mittelsten Scheid O., Incarbone M. Under siege: virus control in plant meristems and progeny. Plant Cell. 2021;(33):2523–2537. doi: 10.1093/plcell/koab140

50. Qiao J.H., Zang Y., Gao Q., Liu S., Zhang X.W., Hu W., Wang Y., Han C., Li D., Wang X.B. Transgene-and tissue culture-free heritable genome editing using RNA virus-based delivery in wheat. Nat. Plants. 2025;(11):1252–1259.

51. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with Alpha Fold. Nature. 2021;(596):583–589.

52. Zheng W., Wuyun Q., Li Y., Zhang J., Freddolino P.L., Zhang Y. Deep-learning-based single-domain and multidomain protein structure prediction with D-I-TASSER. Nat. Biotechnol. 2025. P.1-13.

53. Guille A., Adélaïde J., Finetti P., Andre F., Birnbaum D., Mamessier E., Bertucci F., Chaffanet M. A benchmarking study of individual somatic variant callers and voting-based ensembles for whole-exome sequencing. Briefings Bioinf. 2025;(26):bbae697. doi: 10.1093/bib/bbae697

54. Kim M.G., Go M.J., Kang S.H., Jeong S.H., Lim K. Revolutionizing CRISPR technology with artificial intelligence. Exp. Mol. Med. 2025;(57):1419–1431.


Review

For citations:


Khrustaleva L.I. Molecular genetics and multi-omics technologies in plant breeding. Vegetable crops of Russia. 2025;(6):26-33. (In Russ.) https://doi.org/10.18619/2072-9146-2025-6-26-33

Views: 117

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)