Features of rooting microcuttings of black crowberry (Empetrum nigrum L.) during adaptation
https://doi.org/10.18619/2072-9146-2025-5-86-95
Abstract
Relevance. Black crowberry (E. nigrum L.) is a wild plant that contains high levels of biologically active substances. It is currently attracting increasing interest as both a berry and a medicinal plant. Therefore, it has potential for cultivation as a source of medicinal plant material containing high amounts of flavonoids. There is therefore a need to develop accelerated methods of vegetative propagation, including clonal micropropagation. A critical step in this process is adapting the plant to non-sterile conditions. The aim of our research was therefore to develop methods for adapting and inducing rhizogenesis ex vitro of microcuttings of black crowberry (E. nigrum L.) cultivar 'Irland' grown on various substrates using different rooting stimulants.
Methods. The study focused on unrooted microcuttings of black crowberry (E. nigrum L.) plants of the 'Irland' variety, which were obtained through clonal micropropagation in vitro. The crowberry microcuttings were planted in the third ten-day period of November in mini-greenhouses in various substrates (high-moor peat with pHKCl ≤ 3.5-4.0, sphagnum moss, and agroperlite). Experimental microplants treated with root formation stimulants ('Radygreen zelonyy', 'Mycofriend', 'BioKoren', 'KorneWin Ultra') were planted in these substrates. The control variant was a variant without treatment. The mini-greenhouses were located under Zěma ZML-0160 LED phytolamps, with a photosynthetic photon flux density (PPFD) of 120 µmol·s−1·m−2 at a distance of 50 cm from the plants, with a 16/8-hour (light/dark) photoperiod for 45 days. After adaptation to non-sterile conditions, the plants were maintained in a greenhouse (temperature 22-30 ºC, air humidity 70-75%).
Results. On the 45th day of adaptation and rooting process of the black crowberry microcuttings', the advantages of cultivating them on an inorganic substrate agroperlite and treating the basal parts of the microcuttings with the mycorrhiza-forming preparation ‘Mycofriend’ was revealed. With a rooting of 88.9%. Significant differences were found in the morphometric indicators of the root system: in the number of roots – 4.00 ± 0.41 pcs., compared to the control 2.52 ± 0.35 pcs.; the total root length – 6.24 ± 0.83 cm, compared to the control – 2.71 ± 0.40 cm. The maximum total shoot growth was obtained in a substrate with acidic peat using the mycorrhiza-forming preparation ‘Mycofriend’ and amounted 6.78 ± 0.88 cm, compared to the control 3.97 ± 0.25 cm.
Conclusion. The information is useful in the scientific understanding of the rooting ability of ever- green plants ex vitro, using the black crowberry cultivar 'Irland' as an example. It could also help us to obtain high-quality planting material for large-scale commercial production.
About the Authors
I. V. NechiporenkoRussian Federation
Ivan V. Nechiporenko – PhD Student of the Department of fruit growing, viticulture and winemaking, Institute of Horticulture and landscape architecture; Junior scientist
Scopus ID: 57946985700
Researcher ID: HHS-2436-2022
Timiryazevskaya street, 49, Moscow, 127434
St. Institute, Big Vyazemy 143050
S. V. Akimova
Russian Federation
Svetlana V. Akimova – Doctor of Agricultural Sciences, Associate Professor of the Department of fruit growing, viticulture and winemaking, Institute of Horticulture and landscape architecture
Timiryazevskaya street, 49, Moscow, 127434
P. O. Kazakov
Russian Federation
Pavel O. Kazakov – PhD Student of the Department of fruit growing, viticulture and winemaking, Institute of Horticulture and landscape architecture; Junior scientist
Timiryazevskaya street, 49, Moscow, 127434
St. Institute, Big Vyazemy 143050
L. A. Marchenko
Russian Federation
Liudmila A. Marchenko – Cand. Sci. (Agriculture), Associate Professor of the Department of Fruit Growing, Viticulture and Winemaking, Institute of Horticulture and Landscape Architecture
Scopus ID: 57193568421
Timiryazevskaya street, 49, Moscow, 127434
O. A. Kolesnikova
Russian Federation
Olga A. Kolesnikova – Junior scientist
St. Institute, Big Vyazemy 143050
M. A. Sevostyanov
Russian Federation
Mikhail A. Sevostyanov – Сand. Sci. (Technology), head of the Department of Agroecosystem Security and Productivity
Scopus ID: 6602727850
Researcher ID: P-7529-2018
St. Institute, Big Vyazemy 143050
References
1. Muravnik L.E. Shavarda A.L. Leaf glandular trichomes in Empetrum nigrum: morphology, histochemistry, ultrastructure and secondary metabolites. Nordic Journal of Botany. 2012;30:470-481. https://doi.org/10.1111/j.1756-1051.2011.01322.x
2. Hagerup O. Studies on the Empetraceae. Biol. Meddr. 1946;20:1-49.
3. Lorion J., Small E. Crowberry (Empetrum): a chief arctic traditional indigenous fruit in need of economic and ecological management. The Botanical Review. 2021;87:259-310. https://doi.org/10.1007/s12229-021-09248-0
4. Koskela A.K.J., Anttonen M.J., Soininen T.H., Saviranta N.M.M., Auriola S., Julkunen-Tiitto R., Karjalainen R.O. Variation in the anthocyanin concentration of wild populations of crowberries (Empetrum nigrum L. subsp. hermaphroditum). J. Agric. and Food Chem. 2010;58(23);12286-12291. https://doi.org/10.1021/jf1037695
5. Park S.Y., Lee E.S., Han S.H., Lee H.Y., Lee S. Antioxidative effects of two native berry species, Empetrum nigrum var. japonicum Koch and Rubus buergeri Miq., from the Jeju Island of Korea. Journal of Food Biochemistry. 2012;36(6):675-682. https://doi.org/10.1111/j.1745-4514.2011.00582.x
6. Kochkin R.A.; Lobanov A.A.; Andronov S.V.; Kostricin V.V.; Popov A.A.; Lobanova, L.P.; Kobelkova, I.V.; Kambarov, A.O. Efficiency of black crowberry (Empetrum nigrum L.) in correction of cold stress. Journal of new medical technologies. 2017;24(4):66-72. (In Russ.) https://www.elibrary.ru/zxiajj https://doi.org/10.12737/article_5a38f3d06a2580.70516474
7. Manninen O.H., Peltola R. Effects of picking methods on the berry production of bilberry (Vaccinium myrtillus), lingonberry (V. vitisidaea) and crowberry (Empetrum nigrum ssp. hermaphroditum) in Northern Finland. Silva Fennica. 2013;47:1-12. https://doi.org/10.14214/sf.972
8. Seeram N.P. Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008;56:627-629. https://doi.org/10.1021/jf071988k
9. Svanberg I., Ægisson S. Edible wild plant use in the Faroe Islands and Iceland. Acta Soc. Bot. Pol. 2012;81:233-238. https://doi.org/10.5586/asbp.2012.035
10. Jurikova T., Mlcek J., Skrovankova S., Balla S., Sochor J., Baron M., Sumczynski D. Black crowberry (Empetrum nigrum L.) flavonoids and their health promoting activity. Molecules. 2016;21:1685. https://doi.org/10.3390/molecules21121685
11. Sulavik J., Auestad I., Boudreau S., Halvorsen R., Rydgren, K. Population re-establishment and spatial dynamics of crowberry (Empetrum nigrum ssp. hermaphroditum), a foundation species in restored alpine ecosystems. Ecology and Evolution. 2024;14:e70242. https://doi.org/10.1002/ece3.70242
12. Mazurenko M.T. Ericaceous shrubs of the Far East (structure and morphogenesis). Khokhryakov, A.P., Ed.; Nauka: Moscow, Russia, 1982. P. 184. (In Russ.)
13. Bell J.N., Tallis J.H. Empetrum nigrum L. Journal of Ecology. 1973;61:289-305. https://doi.org/10.2307/2258934
14. Zverev V.E., Zvereva, E.L., Kozlov, M.V. Slow growth of Empetrum nigrum in industrial barrens: combined effect of pollution and age of explant plants. Environmental Pollution. 2008;156:454-460. https://doi.org/10.1016/j.envpol.2008.01.025
15. Parkinson L.V., Mulder C.P.H., Putman M., Ruggles A., Sousa E.E., Spellman K.V. Crowberry in a changing climate: threats and opportunities. Berries in Alaska’s changing environment Series: Empetrum nigrum. Institute of Arctic Biology and International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, USA., p. 1-19.
16. Tybirk K., Nilsson M.-C., Michelsen A., Kristensen H.L., Shevtsova A., Strandberg M.T., Johansson M., Nielsen K.E., Riis-Nielsen T., Strandberg B., Johnsen I. Nordic Empetrum dominated ecosystems: function and susceptibility to environmental changes. AMBIO: A Journal of the Human Environment. 2000;29:90-97. https://doi.org/10.1579/0044-7447-29.2.90
17. Ruotsalainen A.L., Markkola A.M., Kozlov M.V. Birch effect on root fungal colonisation of crowberry are uniform along different environmental gradients. Basic and Applied Ecology. 2010;11:459-467. https://doi.org/10.1016/j.baae.2010.05.002
18. Isaeva M.A., Burakova М.А., Dudetskaya N.А. Development of technology for dry extract of the black crowberry herb. Young pharmacy – potential of the future 2022. Conference abstract. 2022. P. 709-712. (In Russ.) https://www.elibrary.ru/axsmjg
19. Bezverkhniaia E.A., Povet’eva T.N., Kadyrova T.V., Suslov N.I., Nesterova Y.V., Afanas’eva O.G., Kul’pin P.V., Yusova Y.G., Ermilova E.V., Miroshnichenko A.G., Brazovskii K.S., Belousov M.V. Screening study for anticonvulsive activity of lipophilic fractions from Empetrum nigrum L. Research Results in Pharmacology. 2020;6:67-73. https://doi.org/10.3897/rrpharmacology.6.55015
20. Bae H.-S., Kim H.J., Kang J.H., Kudo R., Hosoya T., Kumazawa S., Jun M., Kim O.-Y., Ahn M.-R. Anthocyanin profile and antioxidant activity of various berries cultivated in Korea. Natural Product Communications. 2015;10(6):963-968. https://doi.org/10.1177/1934578X1501000
21. Wollenweber E., Dörr M., Stelzer R., Arriaga-Giner F.A. Lepophilic phenolics from the leaves of Empetrum nigrum – chemical structures and exudate localization. Bot. Acta. 1992;105:300-305. https://doi.org/10.1111/j.1438-8677.1992.tb00302.x
22. Hagen D. Propagation of native Arctic and alpine species with a restoration potential. Polar Research. 2002;21:37-47. https://doi.org/10.3402/polar.v21i1.6472
23. Szmidt A.E., Nilsson M.-C., Briceño E., Zackrisson O., Wang X.-R. Establishment and genetic structure of Empetrum hermaphroditum populations in northern Sweden. Journal of Vegetation Science. 2002;13:627-634. https://doi.org/10.1111/j.1654-1103.2002.tb02090.x
24. Pons T.L. Dormancy, germination and mortality of seeds in heathland and inland sand dunes. Acta Bot. Neerl. 1989;38(3):327-335. https://doi.org/10.1111/j.1438-8677.1989.tb01356.x
25. Baskin C.C., Zackrisson O., Baskin J.M. Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. American Journal of Botany. 2002;89:486-493. https://doi.org/10.3732/ajb.89.3.486
26. Qarachoboogh A.F., Alijanpour A., Hosseini B., Shafiei A.B. Efficient and reliable propagation and rooting of foetid juniper (Juniperus foetidissima Willd.), as an endangered plant under in vitro condition. In Vitro Cell. Dev. Biol.-Plant. 2022;58:399-406. https://doi.org/10.1007/s11627-021-10239-4
27. Li Q., Yu P., Lai J., Gu M. Micropropagation of the potential blueberry rootstock – Vaccinium arboretum through axillary shoot proliferation. Scientia Horticulturae. 2021;280:109908. https://doi.org/10.1016/j.scienta.2021.109908
28. Wang Y., Zhang X., Jiang Z., Yang X., Liu X., Ou X., Su W., Chen R. Establishment and optimization of micropropagation system for southern highbush blueberry. Horticulturae. 2023;9:893. https://doi.org/10.3390/horticulturae9080893
29. Hanus-Fajerska E., Wiszniewska A., Czaicki P. Effectiveness of Daphne L. (Thymelaeaceae) in vitro propagation, rooting of microshoots and acclimatization of plants. ACTA AGROBOTANICA. 2012;65:21-28. https://doi.org/10.5586/aa.2012.039
30. Park S.-Y., Kim Y.-W., Moon H.-K. Practical factors controlling in vitro multiplication and rooting in Empetrum nigrum var. japonicum, an endangered woody species. Korean J. Plant Res. 2012;25(6):739-744. https://doi.org/10.7732/kjpr.2012.25.6.739
31. Wei X., Chen J., Zhang C., Wang Z. In vitro shoot culture of Rhododendron fortunei: an important plant for bioactive phytochemicals. Industrial Crops & Products. 2018;126:456-465. https://doi.org/10.1016/j.indcrop.2018.10.037
32. Samridha V., Chandra S. In-vitro propagation to conserve medicinally important plants: insight, procedures, and opportunities. In: Kumar, L., Bharadvaja, N., Singh, R., Anand, R. (eds) Medicinal and Aromatic Plants. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham; 2024:13-25. https://doi.org/10.1007/978-3-031-60117-0_2
33. Han M.-S., Park S.-Y., Moon H.-K., Kang Y.-J. Micropropagation of a rare tree species, Empetrum nigrum var. japonicum K. Koch via axillary bud culture. Jour. Korean For. Soc. 2010;99(4):568-572.
34. Zaytseva Y.G., Ambros E.V., Novikova T.I. Rooting and acclimatization to ex vitro conditions of regenerants of frost-resistant members of Rhododendron. Turczaninowia. 2018;21(1):144-152. (In Russ.) https://doi.org/10.14258/turczaninowia.21.1.13 https://www.elibrary.ru/yvaixi
35. Akimova S.V., Radzhabov A.K., Bukhtin D.A., Kirkach V.V., Aladina O.N., Demenko V.I., Beloshapkina O.O. Adaptation to non-sterile conditions of grape plants rooted in vitro in a nutrient media enriched by organosilicon compounds. Izvestiya of Timiryazev Agricultural Academy. 2019;(5):34-53. (In Russ.) https://doi.org/10.34677/0021-3420-2019-5-34-53 https://www.elibrary.ru/wbtouq
36. Pospíšilová J., Tichá I., Kadlečk P., Haisel D., Plzáková Š. Acclimatization of micropropagated plants to ex vitro conditions. BIOLOGIA PLANTARUM. 1999;42(4):481-497. https://doi.org/10.1023/A:1002688208758
37. Chandra S., Bandopadhyay R., Kumar V., Chandra R. Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett. 2010;32:1199-1205. https://doi.org/10.1007/s10529-010-0290-0
38. Ryndia H.P., Vicks T.N., Kykharchyk N.V.Substrate influence on ex vitro adaptation of cherry cultivars. Plodovodstvo. 2018;30:99-103. (In Russ.) https://www.elibrary.ru/pdbmys
39. Preece J.E., Sutter, E.G. Acclimatization of micropropagated plants to the greenhouse and field. In Micropropagation. Technology and Application; Debergh, P.C., Zimmerman, R.H., Eds.: Kluwer Academic Publishers, 1991:71-93. https://doi.org/10.1007/978-94-009-2075-0_5
40. Shiwani K., Sharma D., Kumar A. Improvement of plant survival and expediting acclimatization process. In Commercial Scale Tissue Culture for Horticulture and Plantation Crops; Gupta, S., Chaturvedi, P., Eds., Springer: Singapore, 2022: 227-291. https://doi.org/10.1007/978-981-19-0055-6_12.
41. Hashenka V.A., Kukharchyk N.V.Substrates influence on rhizogenesis and adaptation ex vitro of blackberry microplants. Plodovodstvo. 2020;32:134-138. (In Russ.) https://www.elibrary.ru/vmprti
42. Kornatsky S.A. Tissue culture as a model for studying adaptation processes in the ontogenesis of fruit and berry plants. Fruit and berry growing in Russia. 1996;3:84-89. (In Russ.)
43. Sutter E.G., Hutzell M. Use of humidity tents and antitranspirants in the acclimatization of tissue-cultured plants to the greenhouse. Scientia Horticulturae. 1984;23(4):303-312. https://doi.org/10.1016/0304-4238(84)90026-8
44. Yazar K. Evaluation of the effects of chitosan application and growing media on the adaptation process of fercal grape rootstock. BMC Plant Biology. 2025;25:1152.
45. Maynard C.A., Kavanagh K., Fuernkranz H., Drew A.P. Black cherry (Prunus serotina Ehrh.). In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Vol. 16. Trees III. Springer, Berlin; 1991:3-22. https://doi.org/10.1007/978-3-662-13231-9_1
46. Nin S., Carla Benelli C., Petrucci W.A., Turchi A., Pecchioli S., Gori M. Giordani E. In vitro propagation and conservation of wild bilberry (Vaccinium myrtillus L.) genotypes collected in the Tuscan Apennines (Italy). Journal of Berry Research. 2019;9:411-430. https://doi.org/10.3233/JBR-180379
47. Kukharchik N.V., Kastritskaya M.S., Semenas S.E., Kolbanova E.V., Krasinskaya T.A., Volosevich N.N., Solovey O.V., Zmushko A.A., Bozhidai T.N., Rudnia A.P., Malinovskaya A.M. Propagation of fruit plants in culture in vitro. Minsk: Belaruskaya navuka; 2016. 208 p. (In Russ.)
48. Debergh P. C., Maene L. J. A scheme for commercial propagation of ornamental plants by tissue culture. Sci. Hort. 1981;14(4);335345. https://doi.org/10.1016/0304-4238(81)90047-9
49. Singh A., Agarwal P.K. Enhanced micropropagation protocol of ex vitro rooting of a commercially important crop plant Simmondsia chinensis (Link) Schneider. Journal of Forest 2016;62(3);107-115. https://doi.org/10.17221/80/2015-JFSScience.
50. McClelland M.T., Smith M.A.L., Carothers Z.B. The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plants. Plant Cell Tiss Organ Cult. 1990;23:115-123. https://doi.org/10.1007/BF00035831
51. Bonga J.M., Von Aderkas P. In vitro culture of trees. Forestry sciences, volume 38; 1992: 238.
52. Kozai T. Acclimatization of micropropagated plants. In: Bajaj Y.P.S. (eds) High-Tech and Micropropagation I. Biotechnology in Agriculture and Forestry, vol 17. Springer, Berlin, Heidelberg; 1991:127-141. https://doi.org/10.1007/978-3-642-76415-8_8.
53. Sato-Yamauchi M., Tsuda H., Araki K., Uchida A., Yasuda K., Tetsumura T., Komatsu H., Kunitake H. Clonal propagation system using plant tissue culture and ex vitro rooting in Japanese wild Vaccinium and blueberry cultivars. 園学研 (Hort. Res. (Japan)). 2012;11(1):13-19. https://doi.org/10.2503/hrj.11.13
54. Nawandish F., Dumanoğlu H., Sarıkamış G. Novel approaches to improve rooting of microshoots, acclimatization and plant growth of Pyrodwarf pear rootstock. Plant Cell Tiss. Organ Cult. 2024;157:58. https://doi.org/10.1007/s11240-024-02781-x
55. Pelizza T.R., Damiani C.R., Rufato A. de R., de Souza A.L.K., Ribeiro M. de F., Schuch M.W. Microcutting in blueberry using branch from different positions and substrates. Bragantia. 2011;70(2):319-324. https://doi.org/10.1590/S0006-87052011000200010
56. Villarreal-Ruiz L., Neri-Luna C., Anderson I.C., Alexander I.J. In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis. 2012;56:67-75. https://doi.org/10.1007/s13199-012-0161-7
57. Wei X., Chen J., Zhang C., Liu H., Zheng X., Mu J. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. Horticulture Research. 2020;7:140. https://doi.org/10.1038/s41438-020-00361-6
58. Song G.Q. Blueberry (Vaccinium corymbosum L.). In Agrobacterium Protocols: Methods in Molecular Biology, vol. 1224; Wang, K. Eds., Springer, New York, NY, 2015: 121-132. https://doi.org/10.1007/978-1-4939-1658-0_11
59. Shupletsova O.N., Tovstik Е.V., Popyvanov D.V. Adaptation of sterile wheat plants to soil under conditions of root treatment with exometabolites of basidiomycetes. Agricultural Science Euro-North-East. 2024;25(6):1028-1037. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.6.1028-1037 https://www.elibrary.ru/bhxpde
60. Talla S.K., Bagari P., Manga S., Aileni M., Mamidala P. Comparative study of micropropagated plants of grand Naine banana during in vitro regeneration and ex vitro acclimatization. Biocatal Agric Biotechnol. 2022;42:102325. https://doi.org/10.1016/j.bcab.2022.102325
61. Sharma N., Kumar N., James J., Kalia S., Joshi S. Strategies for successful acclimatization and hardening of in vitro regenerated plants: challenges and innovations in micropropagation techniques. Plant Sci Today. 2023;10:90-7. https://doi.org/10.14719/pst.2376
62. Pascual J.A., Ceglie F., Tuzel Y., Koller M., Koren A., Hitchings R., Tittarelli F. Organic substrate for transplant production in organic nurseries. A review. Agron. Sustain. Dev. 2018;38:35. https://doi.org/10.1007/s13593-018-0508-4
63. Hoang N.N., Kitaya Y., Shibuya T., Endo R. Effects of supporting materials in in vitro acclimatization stage on ex vitro growth of Wasabi plants. Sci Hortic. 2020;261:109042. https://doi.org/10.1016/j.scienta.2019.109042
64. Tsydendambaev A.D. Greenhouse Workshop: ‘Watering. Nutrition. Substrates’ (digest of the Journal Mir Teplits). Moscow, 2019. 306 p. (In Russ.)
65. Kilchevsky A.V., Khotyleva L.V. Genetic foundations of plant breeding. In 4 vols. Vol. 3. Biotechnology in plant breeding. Cell engineering. Sci. Minsk: Belarusian Science; 2012. 489 p. (In Russ.)
66. Sedov E.N., Ogoltsova T.P. Program and methods of studying varieties of fruit, berry and nut crop breeding. Orel: VNIISPK; 1999. 606 p. (In Russ.)
67. Moiseyichenko V.F. Fundamentals of Scientific Research in Fruit Growing, Vegetable Growing and Viticulture. Moscow: Kolos; 1994. 383 p. (In Russ.)
68. Isachkin A.V., Kryuchkova V.A. Fundamentals of scientific research of horticulture: textbook for universities. Saint Petersburg: Lan; 2020. 420 p. (In Russ.).
69. Nowakowska K., Nongdam P., Samsurizal N.A., Pacholczak A. An efficient micropropagation protocol for the endangered european shrub february daphne (Daphne Mezereum I.) and identification of bacteria in culture. Agriculture. 2023;13(9):1692. https://doi.org/10.3390/agriculture13091692
70. Korcak R.F. Nutrition of blueberry and other calcifuges. In: Janick J. (Ed.). Horticultural Reviews, vol. 10. Timber Press, Portland, Oregon; 1988:183-227. https://doi.org/10.1002/9781118060834.ch6
71. Maffia A., Oliva M., Marra F., Mallamaci C., Nardi S., Muscolo A. Humic substances: bridging ecology and agriculture for a greener future. Agronomy. 2025;15:410. https://doi.org/10.3390/agronomy15020410
72. Geng Y., Chen S., Lv P., Li Y., Li J., Jiang F., Wu Z., Shen Q., Zhou R. Positive role of Trichoderma harzianum in increasing plant tolerance to abiotic stresses: a review. Antioxidants. 2025; 14(7):807. https://doi.org/10.3390/antiox14070807
73. Yao X., Guo H., Zhang K., Zhao M., Ruan J., Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front. Microbiol. 2023;14:1160551. https://doi.org/10.3389/fmicb.2023.1160551
74. Sagar A., Yadav S.S., Sayyed R.Z., Sharma S., Ramteke P.W. Bacillus subtilis: a multifarious plant growth promoter, bio-control agent, and bioalleviator of abiotic stress. In Bacilli in Climate Resilient Agriculture and Bioprospecting; Islam M.T., Rahman M., Pandey P. Eds., Springer, Cham., 2022: 561-580. https://doi.org/10.1007/978-3-030-85465-2_24
75. Ortiz A., Sansinenea E. 5 – Bacillus sp. as biofertilizers applied in horticultural crops. Bio-Inoculants in Horticultural Crops. Advances in Bio-Inoculant Sciences, Volume 3; Rakshit A., Meena V.S., Fraceto L.F., Parihar M., Mendon A.B., Singh H.B., Eds., Elsevier Inc., 2024: 97-108. https://doi.org/10.1016/B978-0-323-96005-2.00007-6
76. Taylor T.B., Silby M.W., Jackson R.W. Pseudomonas fluorescens. Trends in Microbiology. 2025;33:250-251. https://doi.org/10.1016/j.tim.2024.11.005
77. Mohan V., Wibisono R., Chalke S., Fletcher G., Leroi F. The antilisteria activity of Pseudomonas fluorescens isolated from the horticultural environment in New Zealand. Pathogens. 2023;12:349. https://doi.org/10.3390/pathogens12020349
78. Fuentes-Quiroz A., Herrera H., Alvarado R., Sagredo-Saez C., Isabel-Mujica M., Vohník M., Rolli E. Cultivable root-symbiotic bacteria of a pioneer ericaceous dwarf shrub colonizing volcanic deposits and their potential to promote host fitness. J. Soil Sci. Plant Nutr. 2024;24:3355-3363. https://doi.org/10.1007/s42729-024-01758-1
79. Kreen S., Svensson M., Rumpunen K. Rooting of clematis microshoots and stem cuttings in different substrates. Scientia Horticulturae. 2002;96(1-4):351-357. https://doi.org/10.1016/S0304-4238(02)00126-7
80. Nguyen A.Q., Khan A.L., Ray R.L., Shan X., Balan V. Potential of algae as fertilizers and plant stimulants for sustainable and ecofriendly agriculture. Algal Research. 2025;91:104337 https://doi.org/10.1016/j.algal.2025.104337
81. Yu J., Luo B., Yang Y., Ren S., Xu L., Wang L., Jia X., Zhu Y., Yi K. Polyphosphate-enriched algae fertilizer as a slow-release phosphorus resource can improve plant growth and soil health. Journal of Integrative Agriculture. 2025;24(9):3656-3670. https://doi.org/10.1016/j.jia.2025.02.004
82. Chojnacka K., Saeid A., Witkowska Z., Tuhy L. Biologically active compounds in seaweed extracts – the prospects for the application. The Open Conference Proceedings Journal. 2012;3:20-28. https://doi.org/10.2174/1876326X01203020020
Review
For citations:
Nechiporenko I.V., Akimova S.V., Kazakov P.O., Marchenko L.A., Kolesnikova O.A., Sevostyanov M.A. Features of rooting microcuttings of black crowberry (Empetrum nigrum L.) during adaptation. Vegetable crops of Russia. 2025;(5):86-95. (In Russ.) https://doi.org/10.18619/2072-9146-2025-5-86-95

































