Role of plant viral infection in the inhibition of potato immune responses to the damage caused by leaf-eating pests
https://doi.org/10.18619/2072-9146-2025-3-77-82
Abstract
Relevance. There are very few studies on the role of plant viral infection in inhibiting the immune response of potato plants to the damage caused by leaf-eating pests; the available data has a fragmental character.
Materials and Methods. The research was carried out in an experimental field of FSBSI “FSC of Agricultural Biotechnology of the Far East named after A.K. Chaiki” in 2020-2023. The following potato varieties of Russian and foreign breeding origin were used in the experiment: Belmonda, Sante, Dachnyi, Yantar', Avgustin, Yubilyar, Kazachok, Red Lady, Labella, Queen Anne, Laperla, Smak, Lilly, Arktika, Svitanok Kievskii, Nakra, Dal'nevostochnyi, and Severnyi. The progression of plant viral infection and the degree of the damage caused by Henosepilachna vigintioctomaculata were assessed on a point scale.
Results. The research established a direct correlation between a decrease in the immune response of potato plants to leaf-eating insects and the accumulation of viral infection without the renewal of planting material. Potato varieties Svitanok Kievskii, Nakra, Dal'nevostochnyi, and Severnyi were observed to have latent viral infection (from 0 to 0.5 points) in the first year of the experiment (2022) and were not susceptible to the potato ladybird beetle. Mixed plant viral infection manifested itself on potato plants in 2023 decreasing the immunity of the plants to phytophagous insects, particularly to the potato ladybird beetle. The progression of plant viral infection on variety Svitanok Kievskii reached four points while the degree of the damage caused by the potato ladybird beetle to potato plants was 1.2 points. The progression of plant viral infection scored about two points on varieties Nakra and Severnyi with a damage degree of one point. Variety Dal'nevostochnyi was the least susceptible to plant viral infection and the degree of damage was minimum as well.
About the Authors
О. A. SobkoRussian Federation
Ol'ga A. Sobko – researcher, laboratory of Breeding and Genetic Research on Field Crops
Scopus Author ID: 57218617568
692539 Primorsky kray, Ussuriysk, Timiryazevsky stl., Volozhenina st., 30B
М. V. Ermak
Russian Federation
Marina V. Ermak – Junior Researcher, Laboratory of Breeding and Genetic Research on Field Crops
692539 Primorsky kray, Ussuriysk, Timiryazevsky stl., Volozhenina st., 30B
Scopus Author ID: 57488489200
References
1. Vilkova N.A., Nefedova L.I., Frolov A.N. Immunity of seed plants and its phytosanitary value in agroecosystems. Plant protection and quarantine. 015;(8):3-9. https://www.elibrary.ru/uarjwv (In Russ.)
2. Vilkova N.A., Nefedova L.I. Structure of seed plants immunogenotypic system and its functions in agroecosystems. Subtropical and ornamental horticulture. 2012;(46):192-199. (In Russ.) https://www.elibrary.ru/phyesv
3. Gribust I.R., Belitskaya M.N. Diversity of insect populations to the gradient of the forest-agrarian landscape. Environment and Human: Ecological Studies. 2020;10(3):265-289. (In Russ.) https://doi.org/10.31862/2500-2961-2020-10-3-265-289 https://www.elibrary.ru/qfiths
4. Ivantsova E.A., Vostrikova Yu.V. Characterizing the formation of entomofauna in agroforest landscapes. Proceedings of Lower Volga AgroUniversity Complex: Science and Higher Education. 2015;1(37):34-37. (In Russ.) https://www.elibrary.ru/tomqpx
5. Pavlyushin V.A., Vilkova N.A., Sukhoruchenko G.I., Nefedova L.I. Formation of agroecosystems and pest communities. Plant protection news. 2016;2(28):5-15. (In Russ.)
6. Markelova T.S., Chekmareva L.I., Baukenova E.A. Role insect vectors play in the transmission and development of the Russian winter wheat mosaic virus. Plant protection and quarantine. 2012;(8):42-44. (In Russ.) https://elibrary.ru/palewh
7. Ermak M.V., Matsishina N.V. The potato ladybird beetle Henosepilachna vigintioctomaculata (Motsch.): classification, morphology and harmfulness (review). Vegetable crops of Russia. 2022;(6):97- 103. (In Russ.) https://doi.org/10.18619/2072-9146-2022-6-97-103 https://elibrary.ru/rvrljd
8. Zamalieva F.F. Control of virus diseases of potato. Plant protection and quarantine. 2013;(3):17-21. (In Russ.) https://elibrary.ru/pvqmmn
9. Mal'ko А.M., Zhivyh A.V., Nikitin M.M., Frantsuzov P.A., Statsyuk N.V., Dzhavakhiya V.G., Golikov A.G. Monitoring of potato viral diseases in different regions of russia using real-time pcr matrix-based technology. Potato and vegetables. 2017;(12):26-29. (In Russ.) https://elibrary.ru/zwqdwl
10. Eigenbrode S.D., Ding H., Shiel P., Berger P.H. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. R. Soc. London. Ser. B Biol. Sci. 2002;(269):455-460.
11. Rajabaskar D., Ding H., Wu Y., Eigenbrode S.D. Different reactions of potato varieties to infection by potato leafroll virus, and associated responses by its vector, Myzus persicae (Sulzer). J. Chem. Ecol. 2013;(39):1027-1035.
12. Rajabaskar D., Bosque-Pérez N.A., Eigenbrode S.D. Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res. 2014;(186):32-37. https://doi.org/10.1016/j.virusres.2013.11.005
13. Lacroix C., Jolles A., Seabloom E.W., Power A.G., Mitchell C.E., Borer E.T. Non-random biodiversity loss underlies predictable increases in viral disease prevalence. J. R. Soc. Interface. 2014;(11):20130947. https://doi.org/10.1098/rsif.2013.0947
14. Zadina N., Bukasov S. Mezhdunarodnyi klassifikator SEHV vidov kartofelya sektsii Tuberarium (Dun.) Buk. roda Solanum L. [The International COMECON List of Descriptors for Tuberarium (Dun.) Buk. species of the genus Solanum L.]. Leningrad: VIR, 1984. 41p. (In Russ.)
15. Vilkova N.A., Asyakin B.P., Nefedova L.I., Vereshchagina A.B., Ivanova O.V., Razdoburdin V.A., Fasulati S.R., Yusupov T.M. Methods for evaluating agricultural crops for group resistance to pests. Saint Petersburg, 2003. 112 p. (In Russ.)
16. Ryazantsev D.Yu., Zavriev S.K. An efficient diagnostic method for the identification of potato viral pathogens. Molekulyarnaya biologiya. 2009;43(3):558-567. (In Russ.) https://elibrary.ru/kfpeov
17. Ryabushkina N.A., Omasheva M.E., Galiakparov N.N. Specifics of DNA extraction from plant objects. Biotekhnologiya. Teoriya i praktika = Eurasian Journal of Applied Biotechnology. 2012;(2):9-26. (In Russ.) https://elibrary.ru/vkufwv
18. Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;4(1):article 4.
19. Murtagh F., Legendre P. Ward’s hierarchical clustering method: Сlustering criterion and agglomerative algorithm. Journal of Classification. 2014;31(3):274-295. https://doi.org/10.1007/s00357-014-9161-z
20. Sobko O.A., Fisenko P.V., Kim I.V., Matsishina N.V. Potato viruses of 7 commercial cultivars grown in field Primorsky Krai of Russia. Vegetable crops of Russia. 2022;(1):79-85. https://doi.org/10.18619/2072-9146-2022-1-79-85 https://elibrary.ru/dinlhg
21. Jeger M.J. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. Plants. 2020;9(12):1768. https://doi.org/10.3390/plants9121768
22. Sobko O.A., Fisenko P.V., Kim I.V. Plant viruses in the system of seed potato production. Vegetable crops of Russia. 2024;(1):74-80. https://doi.org/10.18619/2072-9146-2024-1-74-80 https://elibrary.ru/jvmbfa
23. Lapshinov N.A. Influence of virus infection on the productivity of potatoes under the conditions of the northern wooded plain of West Siberia. Achievements of science and technology in agro-industrial complex. 2010;(09):27-29. (In Russ.) https://elibrary.ru/mvusmv
24. Baebler Š., Coll A., Gruden K. Plant Molecular Responses to Potato Virus Y: A Continuum of Outcomes from Sensitivity and Tolerance to Resistance. Viruses. 2020;12(217):1-17. https://doi.org/10.3390/v12020217
25. Sobko O.A., Matsishina N.V. Role of Henosepilachna vigintioctomaculata Motschulsky, 1858 (Coleoptera: Coccinellidae) in the transmission of potato viruses. Amurian Zoological Journal. 2023;15(4):772-780. (In Russ.) https://doi.org/10.33910/2686-9519-2023-15-4-772-780 https://elibrary.ru/drrfpa
26. Jones R.A.C. Global Plant Virus Disease Pandemics and Epidemics. Plants (Basel). 2021;10(2):233. https://doi.org/10.3390/plants10020233
27. Chen S., Li W., Huang X., Chen B., Zhang T., Zhou G.. Symptoms and yield loss caused by rice stripe mosaic virus. Virology Journal. 2019;16(1):145. https://doi.org/10.1186/s12985-019-1240-7
28. Anikina I., Kamarova A., Issayeva K., Issakhanova S., Mustafayeva N., Insebayeva M., Mukhamedzhanova A., Khan S.M., Ahmad Z., Lho L.H., Han H., Raposo A. Plant protection from virus: a review of different approaches. Frontiers in Plant Science. 2023;14:1163270. https://doi.org/10.3389/fpls.2023.1163270
Review
For citations:
Sobko О.A., Ermak М.V. Role of plant viral infection in the inhibition of potato immune responses to the damage caused by leaf-eating pests. Vegetable crops of Russia. 2025;(3):77-82. https://doi.org/10.18619/2072-9146-2025-3-77-82