Preview

Vegetable crops of Russia

Advanced search

Allium cepa. Biological activity, antioxidants, tollerance to unfavourable environmental factors

https://doi.org/10.18619/2072-9146-2025-2-70-81

Abstract

Production and utilization of Allium cepa is the basis of nutritional value and the human health maintainance. The review discusses the main onion biologically active compounds, determining the biological activity of this vegetable, peculiarities of antioxidant and carbohydrate distribution between inner and outer scales, changes in the content and distribution of biologically active compounds and chemical elements in conditions of various abiotic stresses: high temperature, drought, flooding and heavy metal loading. Factors affecting onion pungency and natural antioxidant distribution are included. Special attention is payed to sulphur derivative alkenyl cysteine sulphoxides, and polyphenols and flavonoids, sterols, fructoolygosaccharides, organic acids, amino acids, and minerals. Onion selection on tolerance to the unfavorable environmental factors is discussed. The presented data may be the basis for the direct production of Allium cepa with high yield and valuable nutritional characteristics.

About the Authors

N. A. Golubkina
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Nadezhda A. Golubkina – Dr. Sci. (Agriculture), Head Researcher of Laboratory-Analytical Department

14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072



V. I. Nemtinov
Crimean Agricultural Institute
Russian Federation

Viktor I. Nemtinov – Dr. Sci. (Agriculture), Head Researcher of Department of selection and seed production of vegetable and melon crops

150, Kievskaya str., Simferopol, Republic of Crimea, 295043



Z. A. Amagova
Chechen Scientific Institute of Agriculture
Russian Federation

Zarema A. Amagova – Researcher

Grozny, 366021



A. A. Koshevarov
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Andrew A. Koshevarov – Researcher

14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072



References

1. Faostat. Production, superficie et productivité de l’oignon. 2023. http://www.fao.org/faostat/en/#data/QC

2. Caruso G., Conti S., Villari G., Borrelli C., Melchionna G., Minutolo M., Russo G., Amalfitano C. Effects of transplanting time and plant density on yield, quality and antioxidant content of onion (Allium cepa L.) in southern Italy. Sci. Hortic. 2014;(166):111–120.

3. Golubkina N., Caruso G. Allium cepa. Chapter 5 in “Nutritional Composition and Antioxidant Properties of Fruits and Vegetables” ed. Jaiswal, A.Academic press, 2020, Dublin.

4. Yang J., Meyers K.J., Van der Heide J., Liu R.H. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. J. Agric. Food Chem. 2004;(52):6787-6793.

5. Lanzotti V. The analysis of onion and garlic. Review. J. Cromatography A. 2006;(1112):3-22.

6. Hamilton B.K., Pike L.M., Yoo K.S. Clonal variations of pungency, sugar content, and bulb weight of onions due to sulphur nutrition. Sci. Hortic. 1997;(71):131–136.

7. Griffiths G., Trueman L., Crowther T., Thomas B., Smith B. Onions— a global benefit to health. Phytotherapy Research. 2002;16(7):603–615. https://doi.org/10.1002/ptr.1222

8. Galeone C., Pelucchi C. Onion and Garlic Use and Human Cancer. American Society for Nutrition. Am. J. Clin. Nutr. 2007;84(5):1029- 1030

9. Kim S. J., Kim G.H. Quantification of quercetin in different parts of onion and its DPPH radical scavenging and antibacterial activity. Food Sci. Biotechnol. 2006;(15):39–43.

10. Corea G., Fattorusso E., Lanzotti V., Capasso R., Izzo A.A. Antispasmodic saponins from bulbs of red onion, Allium cepa L. var. Tropea. J. Agric. Food Chem. 2005;53(4):935-940.

11. Aghababaei F., Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals. 2023;(16):1020. https://doi.org/10.3390/ph16071020

12. Shiomi N., Benkeblia N., Onodera, S. The metabolism of the fructooligosacharides in onion bulbs: a comprehensive review. J. Appl. Glycosci. 2005;(52):121-127.

13. Biswas S.K., Khair A., Sarker P.K., Alom M.S. Yield and storability of onion (Allium cepa L.) as affected by various levels of irrigation. Bangladesh J. Agric. Res. 2010;35(2):247-255.

14. Muir J.G., Shepherd, S.J., Osella O., Rose R., Barrett J.S., Gibson P.R. Fructan and free fructose content of common Australian vegetables and fruit. J. Agric. Food Chem. 2007;(55):6619−6627.

15. Benitez V., Molla E., Martin-Cabrejas M.A., Aguilera Y., LopezAndreu F.J., Cools K., Terry L.A., Esteban R.M. Characterization of industrial onion wastes (Allium cepa L.): dietary fiber and bioactive compounds. Plant Food Hum. Nutr. 2011;(66):48-57.

16. Darbyshire B., Henry R.J. The distribution of fructans in onions. New Phytol. 1978;(81):29–34.

17. Darbyshire B., Henry R.J. The association of fructans with high percentage dry weight in onion cultivars suitable for dehydrating. J. Sci. Food Agr. 1979;(30):1035–1038.

18. Salamal A.M., Hicks J.F. Nock sugar and organic acid changes in stored onion bulbs treated with maleic hydrazide. Hort. Sci. 1990;25(12):1625-1628.

19. Golubkina N.A., Kekina H.G., Antoshkina M.S., Agafonov A.F., Nadezhkin S.M. Intervarietal differences in accumulation of biologically active compounds by Allium cepa L. Messenger of Russian Agric. Sci. 2016;(2):51-55.

20. Galdon, B.R., Rodriguez, C.T., Rodriguez, E.R., & Ronero, C.D. Organic acid contents in onion cultivars (Allium cepa L.). J. Agric. Food Chem. 2008;56(15):6512-6519.

21. X Sun; Guoliang Hana; Zhe Meng; Lin Lin Na Sui Roles of malic enzymes in plant development and stress responses. Plant Signal. Behav. 2019;14(10):e1644596/ https://doi.org/10.1080/15592324.2019.1644596

22. Hallmann E., Rembialkowska E. Antioxidant compounds content in selected onion bulbs from organic and conventional cultivation. J. Res. Appl. Agric. Eng. 2006;51(2):42-46.

23. Kabata-Pendías, A. Trace Elements in Soils and Plants. KabataPendías A., Pendías H. – 2001. 3rd Edition, CRC Press LCL, Boca Raton.

24. Golubkina, N.A, Agafonov, A.F., Nadegkin, S.M., Antoshkina, M.S., & Koshevarov, A.A. Element composition of Allium cepa. Vestnik Ulyanovsky Agr. Acad. 2015;(3):11-17. 25. Jurgiel-Malecka G., Gibczynka M., Nawrocka-Pezik M. Comparison of chemical composition of selected cultivars of white, yellow and red onions. Bulg. J. Agric. Sci. 2015;21(4):736-741.

25. Ekholm P., Reinivuo H., Mattila P., Pakkala H., Koponen J., Happonen A., Hellstrom J., Ovaskainen M.-L. Changes in themineral and tracr element content of cereals, fruits and vegetables in Finland. J. Food Comp. Anal. 2007;(20):487-495.

26. Paganga, G., Miller, N., & Rice-Evans, C. The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Free Rad. 1999;(30):153-162.

27. Coolong T.W., Randle W.M. Temperature influences flavor intensity and quality in ‘Granex 33’ onion. J. Amer. Soc. Hort. Sci. 2003;128(2):176–181.

28. Mallor C, Thomas B. Resource allocation and the origin of flavor precursors in onion bulbs. J. Hortic. Sci. Biotech. 2008;83(2):191-198.

29. Gallina P.M., Cabassi G., Maggioni A., Natalini A., Ferrante A. Changes in the pyruvic acid content correlates with phenotype traits in onion clones. Austral. J. Crop Sci. 2012;6(1):36-40.

30. Randle W.M. Increasing nitrogen concentration in hydroponic solutions affects onion flavor and bulb quality. J. Am. Soc. Hort. Sci. 2000;(125):254-259.

31. Marinozzi M., Sardella R., Scorzoni S., Ianni F., Lisanti A, Natalini B. Validated pungency assessment of three Italian onion (Allium cepa L.) cultivars. Agr. Food, 2014;2(1):532-541.

32. Kopsell D.A., Randle, W.M. Selenate concentration affects selenium and sulfur uptake and accumulation by ‘Granex 23’ onions. J. Amer. Soc. Hort. Sci. 1997;122(5):721-726.

33. Hertog M.G., Hollman P.C.H., Katan M.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruit commonly consumed in the Netherlands. J. Agric. Food Chem. 1992;(40):2379-2383.

34. Brown P., Blake M., Eagling D., Sterling S.. Therapeutic compounds as an onion quality parameter. Final report Project No VG99054 Horticultural Australian ltd. 2001.

35. Alrawaiq N.S., Abdullah A.A Review of flavonoid quercetin: metabolism, bioactivity and antioxidant properties. Int. J. Pharm. Tech. Res. 2014;6(3):933-941.

36. Hu F.B., Willett W.C. Optimal diets for prevention of coronary heart disease. J. Am. Med. Assoc. 2002;(288):2569-2578.

37. Lines T.C., Ono M. FRS 1000, an extract of red onion peel, strongly inhibits phosphodiesterase 5A (PDE 5A). Phytomedicine. 2006;13(4):236-239. https://doi.org/10.1016/j.phymed.2004.12.001

38. Ranawat P., Kaushik G., Saikia U.N., Pathak C.M., Khanduja K.L. Quercetin impairs the reproductive potential of male mice. Andrologia. 2013;45(1):56-65.

39. Lachman J., Pronek D., Hejtmankova A., Dudjak J., Pivec V., Faitova K. Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Hort. Sci. 2003;30(4):142–147.

40. Slimestad R, Fossen T., Vågen I.M. Onions: a source of unique dietary flavonoids. J. Agric. Food Chem. 2007;55(25):10067–10080.

41. Patil B.S., Pike L.M., Hamilton B.K. Changes in quercetin concentration in onion (Allium cepa L.) owing to location, growth stage and soil type. New Phytol. 1995;(130):349-355.

42. Gülşen A., Makris D.P., Kefalas P. Biomimetic oxidation of quercetin: isolation of a naturally occurring quercetin heterodimer and evaluation of its in vitro antioxidant properties. Food Res. Int. 2007;(40):7–14.

43. Ly T.N., Hazama C., Shimoyamada M., Ando H., Kato K., Yamauchi R. Antioxidative compounds from the outer scales of onion. J. Agric. Food Chem. 2005;(53):8183–8189. 45. Wiczkowski W., Nèmeth K., Buciñski A., Pisku M. K. Bioavailability of quercetin from scales and dry skin of onion in rats. Pol. J. Food Nutr. Sci. 2003;(12):95-99.

44. Lu X., Wang J., Hamzaf M., Ross C.F., Powers J.R., Tang J., Rasco B.A. Determination of total phenolic content and antioxidant capacity of onion and shallots using infrared spectroscopy. Food Chem. 2001;(129):637-644.

45. Abida K. K., Rrhana R., Nighat F., Sadaf M., Sadullah M., Sara K., Nyla J., Ghulam, M. Pharmacological activities of protocatechuic acid. Acta Polon. Pharm. Drug Res. 2015;72(4):643-650.

46. Mogren L.M., Olsson M.E., Gertsson U.E. Quercetin content in field-cured onions (Allium cepa L.): effects of cultivar, lifting time, and nitrogen fertilizer level. J. Agric. Food Chem. 2006;54(17):6185-6191.

47. Sakharkar M.K., Jayaraman P., Soe W.M., Chow V.T., Sing L.C., Sakharkar K.R. In vitro combinations of antibiotics and phytochemicals against Pseudomonas aeruginosa. J. Microbiol. Immunol. Infect. 2009;42(5):364-370.

48. Kavalcová P., Bystrická J., Tóth T., Trebichalský P., Hrstková M., Lenková M., Šiatkovský, O. Content of total polyphenols and antioxidant activity in selected varieties of onion (Allium cepa L.). Sci. J. Food Ind. 2015;9(1):494-500.

49. Andrejiová A., Kóňa J., Barátová, S. Effect of fertilization and cultivar on total polyphenol content in onion (Allium cepa L.). Nutr. Health, Proceeding from the Conference, SPU, Nitra. 2011. 12-17.

50. Patil B.S., Pike L.M. Distribution of quercetin content in different rings of various coloured onion (Allium cepa L.). J. Hort. Sci. 1995;(70):643-650.

51. Bilyk A., Cooper P.L., Saper G.M. Varietal differences in distribution of quercetin and kaempferol in onion (Allium cepa L.) tissue. J. Agric. Food Chem. 1984;(32):274-276.

52. Sobolewska D., Michalska K., Podolak I., Grabowska K. Steroidal saponins from the genus Allium. Phytochem. Rev. 2016;15(1):1-35.

53. Challinor V.L., De Voss J.J. Open-chain steroidal glycosides, a diverse class of plant saponins. Nat. Prod. Rep. 2013;(30):429–454.

54. Čeryová N., Lidiková J., Šnirc M., Harangozo Ľ., Pintér E., Bobko M., Vollmannová A. Heavy metals in onion (Allium cepa L.) and environmental and health risks. Food Additives & Contaminants: Part B. 2023;17(1):66–76. https://doi.org/10.1080/19393210.2023.2291369

55. Opris O., Lung I., Gméling K., Stegarescu A., Buczkó N., Culicov O., Soran M.-L. Responses of the Allium cepa L. to Heavy Metals from Contaminated Soil. Plants. 2024;(13):2913. https://doi.org/10.3390/plants13202913

56. Czarnek K., Tatarczak-Michalewska M., Szopa A., KlimekSzczykutowicz M., Jafernik K., Majerek D., Blicharska E. Bioaccumulation Capacity of Onion (Allium cepa L.) Tested with Heavy Metals in Biofortification. Molecules. 2023, 29(1), 101. https://doi.org/10.3390/molecules29010101

57. Naseem Z., Naveed M., Asif M. et al. Enhancing chromium resistance and bulb quality in onion (Allium cepa L.) through copper nanoparticles and possible health risk. BMC Plant Biol 2024;(24):777. https://doi.org/10.1186/s12870-024-05460-3

58. Alias C., Feretti D., Viola G.V.C., Zerbini I., Bisceglie F., Pelosi G., Zani C., Buschini A., Carcelli M., Rogolino D., Restivo F.M., Degola F. Allium cepa tests: A plant-based tool for the early evaluation of toxicity and genotoxicity of newly synthetized antifungal molecules, Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2023;(889):503654. https://doi.org/10.1016/j.mrgentox.2023.503654

59. Cabuga C.C., Abelada J.J.Z., Apostado R.R.Q., Hernando B.J.H., Lador J.E.C., Obenza O.L.P., Presilda C.J.R, Havana H.C. Allium cepa test: An evaluation of genotoxicity. Proceedings of the International Academy of Ecology and Environmental Sciences. 2017;7(1):12-19.

60. Sheikh Z., Amin M., Khan N., Khan M.N., Sami S.K., Khan S.B., Hafeez I., Khan S.A., Bakhsh E.M., Cheng C.K. Potential application of Allium cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution, Chemosphere. 2021;(279):130545. https://doi.org/10.1016/j.chemosphere. 2021.130545

61. da Cunha Neto A.R., da Silva I.G., Calvelli J.V.B. Toxicity of Heavy Metals that Affect Germination, Development and Cell Cycle of Allium cepa L. Bull Environ Contam Toxicol. 2023;(111):22. https://doi.org/10.1007/s00128-023-03775-9

62. Beinşan, Carmen Sumalan, Radu Vâtcă, Sorin. Influence of Salt Stress on Quality of Some Onion (Allium cepa L.) Local Landraces. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture. 2015;(72):4-6.

63. Ratnaajah V.R., Gnanachelvama N.G. Effect of Abiotic Stress on Onion Yield: A Review. Adv. Technol. 2021;1(1):147-160.

64. Mansha M.Z., Aatif H.M., Ikram K., Hanif C.M.S., Sattar A., Iqbal R., Zaman Q.U., Al-Qahtani S.M., Al-Harbi N.A., Omar W.A. Impact of Various Salinity Levels and Fusarium oxysporum as Stress Factors on the Morpho-Physiological and Yield Attributes of Onion. Horticulturae. 2023;(9):786. https://doi.org/10.3390/horticulturae 9070786

65. Sanwal S.K., Kesh H., Kumar A., Dubey B.K., Khar A., Rouphael Y., Kumar P. Salt Tolerance Potential in Onion: Confirmation through Physiological and Biochemical Traits. Plants. 2022;11(23):3325. https://doi.org/10.3390/plants11233325.

66. Venâncio J.B., da Silva Dias N., de Medeiros J.F., de Morais P.L.D., do Nascimento C.W.A., de Sousa Neto O.N., da Silva Sá F.V. Yield and Morphophysiology of Onion Grown under Salinity and Fertilization with Silicon. Sci. Hort. 2022;(301):111095. https://doi.org/10.1016/j.scienta.2022.111095

67. Ali Fuat Gökçe, Zahide Neslihan Öztürk Gökçe, Muhammad Daniyal Junaid, Usman Khalid Chaudhry, Evaluation of biochemical and molecular response of onion breeding lines to drought and salt stresses. Sci. Hort. 2023;(311):111802. https://doi.org/10.1016/j.scienta.2022.111802.

68. Chaudhry U.K., Gokce Z.N.O., Gokce A.F. Drought and salt stress efects on biochemical changes and gene expression of photosystem II and catalase genes in selected onion cultivars. Biologia. 2021;76(10):3107–3121.

69. Pál M., Tajti J., Szalai G., Peeva V., Végh B., Janda T. Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci Rep. 2018;8(1):12839. doi: 10.1038/s41598-018-31297-6

70. Gedam P.A., Shirsat D.V., Arunachalam T., Ghosh S., Gawande S.J., Mahajan V., Gupta A.J., Singh M. Screening of onion (Allium cepa L.) genotypes for waterlogging tolerance. Front. Plant Sci. 2022;(12):727262. https://doi.org/10.3389/fpls.2021.727262

71. Golubkina N., Amagova Z., Matsadze V., Zamana S., Tallarita A., Caruso G. Effects of Arbuscular Mycorrhizal Fungi on Yield, Biochemical Characteristics, and Elemental Composition of Garlic and Onion under Selenium Supply. Plants. 2020;9(1):84. https://doi.org/10.3390/plants9010084

72. Shinde S. Efect of arbuscular mycorrhizal glomus species on drought tolerance of onion (Allium cepa L.). International Journal of Researches in Biosciences. Agriculture and Technology. 2021;(17):287–294.

73. Ilyas U., du Toit L.J., Hajibabaei M. McDonald M.R. Influence of plant species, mycorrhizal inoculant, and soil phosphorus level on arbuscular mycorrhizal communities in onion and carrot roots. Front. Plant Sci. 2024;(14):1324626. https://doi.org/10.3389/fpls.2023.1324626

74. Selvakumar G., Bhatt R.M., Upreti K.K., Bindu G.H., Shweta K., Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions. World J. Microbiol. Biotechnol. 2015;31(5):833–839.

75. Abdelrasheed K.G., Mazrou Y., Omara A.E.D. Soil amendment using biochar and application of K-humate enhance the growth, productivity, and nutritional value of onion (Allium cepa L.) under deficit irrigation conditions. Plants. 2021;10(12):2598.

76. El Bergui O., Abouabdillah A., Bourioug M. Innovative solutions for drought: evaluating hydrogel application on onion cultivation (Allium cepa) in Morocco. Water. 2023;15(11):1972.

77. Yousefvand P., Sohrabi Y., Heidari G., Weisany W., Mastinu A. Salicylic Acid Stimulates Defense Systems in Allium hirtifolium Grown under Water Deficit Stress. Molecules. 2022;27(10):3083. https://doi.org/10.3390/molecules27103083

78. Mugwanya M., Kimera F., Abdelnaser A., Sewilam H. Coping with Water Stress: Ameliorative Effects of Combined Treatments of Salicylic Acid and Glycine Betaine on the Biometric Traits and Water-Use Efficiency of Onion (Allium cepa) Cultivated under Deficit Drip Irrigation. Biomolecules. 2023;13(11):1634. https://doi.org/10.3390/biom13111634.

79. Purbajanti E.D., Bintang A.S. Yield and component yield of onion (Allium cepa L.) effect of salicylic acid under drought stress in Indonesia. J. Appl. Nat. Sci. 2023;15(2):505–511.

80. Rangwala T., Bafna A., Vyas N., Gupta R. Beneficial Role of Soluble Silica in Enhancing Chlorophyll Content in Onion Leaves Current Agric. Res. J. 2019;7(3):358-367.

81. Verma K.K., Song X.P., Lin B. Silicon Induced Drought Tolerance in Crop Plants: Physiological Adaptation Strategies. Silicon. 2022;(14):2473–2487. https://doi.org/10.1007/s12633-021-01071-x

82. Tian L., Zhang Y., Chen P., Zhang F., Li J., Yan F., Dong Y., Feng B. How does the waterlogging regime affect crop yield? A global metaanalysis. Front. Plant Sci. 2021;(12):634898. https://doi.org/10.3389/fpls.2021.634898

83. Dubey S., Kuruwanshi V.B., Bhagat K.P., Ghodke P.H. Impact of Excess Moisture in Onion Genotypes (Allium cepa L.) under Climate Change Scenario Int. J. Curr. Microbiol. App. Sci. 2021;10(03):166- 175. https://doi.org/10.20546/ijcmas.2021.1003.023.

84. Golubkina N., Romanova O., Romanov V., Krivenkov L.; Shevchenko T., Murariu O.C., Vecchietti L., Hamburda S.B., Caruso G. Varietal Differences of Yield, Morphological, and Biochemical Parameters of Allium cepa L. under Precipitation Excess in Different Phenological Phases. Stresses. 2023;(3):541–554. https://doi.org/10.3390tresses3030038

85. Lin M.-W., Watson J.F., Baggett J.R. Inheritance of soluble solids and pyruvic acid content of bulb onions. J. Am. Soc. Hortic. Sci. 1995;(120):119–122.

86. Lee E.J., Yoo K.S., Jifon J., Patil B.S. Characterization of shortday onion cultivars of 3 pungency levels with flavor precursor, free amino acid, sulphur, and sugar contents. J. Food Sci. 2009;(74):475–480.

87. Marotti M., Piccaglia R. Characterization of flavonoids in different cultivars of onion (Allium cepa L.). J. Food Sci. 2002;(67):1229–1232.

88. Ko E.Y., Nile S.H., Kavita S., Li G. H., Park S.W. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.). Saudi J. Biol. Sci. 2015;22(4):398–403.

89. Shirley B.W. Biosynthesis of flavonoids and effects of stress. Curr. Opinion Plant Biol. 2002;5(3):218-223.

90. Rodrigues A.S., Pérez-Gregorio M.R., García-Falcón M.S., SimalGándara J., Almeida D.P.F. Effect of meteorological conditions on antioxidant flavonoids in Portuguese cultivars of white and red onions. Food Chem. 2011;(124):303–308.

91. Kumar S., Imtiyaz M., Kumar A. Effect of differential soil moisture and nutrient regimes on postharvest attributes of onion (Allium cepa L.). Sci Hort. 2007;(112):121–129.

92. Randle W.M., Lancaster J.E. Sulphur compounds in alliums in relation to flavor quality. In: Rabinowitch H.D., Currah L. (eds): Allium crop sciences: recent advances. Wallingford, U.K., CAB International. 2002; 329–356.

93. Bettoni M.M., Mogor A.F., Pauletti V., Goicoechea N. Growth and metabolism of onion seedlings as affected by the application of humic substances, mycorrhizal inoculation and elevated CO2. Sci. Hort. 2014;(180):227–235.


Review

For citations:


Golubkina N.A., Nemtinov V.I., Amagova Z.A., Koshevarov A.A. Allium cepa. Biological activity, antioxidants, tollerance to unfavourable environmental factors. Vegetable crops of Russia. 2025;(2):70-81. (In Russ.) https://doi.org/10.18619/2072-9146-2025-2-70-81

Views: 206


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)