Preview

Овощи России

Расширенный поиск

Потенциальные лекарственные растения, используемые при лечении COVID-19. Обзор

https://doi.org/10.18619/2072-9146-2025-2-61-69

Аннотация

Новый коронавирус COVID-19 (SARS-CoV-2), неожиданная пандемия, которая вызвала сильный испуг во всем мире. Вирус дал миру один из самых сложных глобальных кризисов общественного здравоохранения, а появление COVID-19 держало весь мир в напряжении. Распространение COVID-19 стало чрезвычайной ситуацией в области здравоохранения, и во всем мире было повышено внимание к разработке стратегии профилактики и лечения. Были разработаны, изготовлены и внедрены некоторые профилактические вакцины в зависимости от варианта COVID-19. Хотя некоторые клинические испытания продолжаются, поскольку ситуация требует исследования успешного противовирусного препарата, следует искать средства в природной медицине. Лекарственные растения и их метаболиты уже давно используются в качестве варианта лечения различных опасных для жизни заболеваний с минимальными побочными эффектами. Таким образом, этот обзор направлен на обобщение предыдущих результатов, касающихся роли лекарственных растений в лечении опасных для жизни заболеваний, в том числе потенциальных лекарственных растений, используемых в случае лечения COVID-19. Некоторые из них включают куркуму (Curcuma longa Linn.), черный тмин (Nigella sativa L.), чеснок (Allium sativum L.) и имбирь (Zingiber officinale Rosc.). Это важные традиционные растительные лекарственные средства для лечения многих сложных заболеваний. Однако предлагаются дальнейшие обширные исследования и испытания, чтобы выяснить роль лекарственных растений в борьбе с пандемией. Кроме того, необходимо изучить использование потенциальных лекарственных растений для лечения определенных вариантов COVID-19 и других опасных для жизни заболеваний.

Ключевые слова


Об авторах

Д. К. Хасан
Эфиопский институт биоразнообразия; Ботанический сад Джиммы
Эфиопия

Джемал Каду Хасан – научный сотрудник

Аддис-Абеба

Джимма



А. С. Ями
Центр сельскохозяйственных исследований Теппи Po. Box 34
Эфиопия

Абера Себока Ями – научный сотрудник

Теппи



Список литературы

1. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery and Translational Research. 2020;10(2):354–367. https://doi.org/10.1007/s13346-019-00691-6

2. Balachandar, I. Mahalaxmi, J. Kaavya, G. Vivekanandhan, S. Ajithkumar, N. Arul, G. Singaravelu, N. Senthil Kumar, S. Mohana Devi. COVID-19: emerging protective measures. European Review for Medical and Pharmacological Sciences. 2020;24:3422-3425. https://doi.org/10.26355/eurrev_202003_20713

3. Chilamakuri, R., & Agarwal, S. COVID-19: Characteristics and Therapeutics. Cells. 2021;10(2), 206. https://doi.org/10.3390/cells10020206

4. Al-Jamal H.; Idriss S.; Roufayel R.; Abi Khattar Z.; Fajloun Z.; Sabatier J.-M. Treating COVID-19 with Medicinal Plants: Is It Even Conceivable? A Comprehensive Review. Viruses. 2024;16(20). https://doi.org/10.3390/v16030320

5. V Kumar, Y Kumar, R Huria, S Kumar, T Kalson, D Jangra, D Kumar, B Mangla. Herbal Medicines Used for the Management of COVID-19. Coronaviruses. 2023;4(1):e030423215402. https://doi.org/10.2174/2666796704666230403101610

6. Ang L., Lee H.W., Choi J.Y., Zhang J., Lee M.S. Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. Integrative Medicine Research. 2020;29:100407. https://doi.org/10.1016/j.imr.2020.100407

7. Saxena S.K. Current Insight into the Novel Coronavirus Disease 2019 (COVID-19). In: Saxena SK (ed.), Coronavirus Disease 2019 (COVID-19), Medical Virology: From Pathogenesis to Disease Control. Springer, Singapore. https://doi.org/10.1007/978-981-15-4814-7.

8. Zhang D., Zhang B., Lv J.T., Sa R.N., Zhang X.M., Lin Z.J. The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence. Pharmacological Research. 2020;(5):104882. https://doi.org/10.1016/j.phrs.2020.104882

9. Al-kuraishy H.M., Al-Fakhrany O.M., Elekhnawy E. et al. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. Eur J Med Res. 2022;(27):186. https://doi.org/10.1186/s40001-022-00818-5

10. Ang L. Herbal medicine for the treatment of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis of randomized controlled trials. J Clin Med. 2020;9(5):1583. https://doi.org/10.3390/jcm9051583

11. Chakraborty R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. Journal of traditional and complementary medicine. 2017;7(2):234-244. https://doi.org/10.1016/j.jtcme.2016.05.006

12. Ren J..L, Zhang A.H., Wang X.J. Traditional Chinese medicine for COVID-19 treatment. Pharmacological research. 2020;155:104743. https://doi.org/10.1016/j.phrs.2020.104743

13. Pandey P., Basnet A., Mali A. Quest for COVID-19 cure: integrating traditional herbal medicines in the modern drug paradigm. Applied Science and Technology Annals. 2020;1(1):63–71. https://doi.org/10.3126/asta.v1i1.30275

14. Logeswari J., Sathya Shankar, Protyusha Guha Biswas, Muninathan N. Role of Medicinal Plants in the Prevention of Covid-19 Pandemic. Medico-legal Update. 2020;20(4).

15. WHO. 2008. Traditional medicine: definitions. World Health Organization Fact sheet N°134.

16. Muhammad N., Saeed M., Khan H. Antipyretic, analgesic and antiinflammatory activity of Viola betonicifolia whole plant. BMC complementary and alternative medicine. 2012;12(1):12-59. https://doi.org/10.1186/1472-6882-12-59

17. Prakash P., Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian Journal of physiology and pharmacology. 2005;49(2):125-131.

18. Sahreen S., Khan M.R., Khan R.A., Alkreathy H.M. Cardioprotective role of leaves extracts of Carissa opaca against CCl 4 induced toxicity in rats. BMC research notes. 2014;7(1):224. https://doi.org/10.1186/1756-0500-7-224

19. Lung J., Lin Y.S., Yang Y.H., Chou Y..L, Shu L.H., Cheng Y.C., Liu H.T., Wu C.Y. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. Journal of Medical Virology. 2020;92(6):693-697. https://doi.org/10.1002/jmv.25761

20. Maurya D.K., Sharma D. Evaluation of traditional ayurvedic preparation for prevention and management of the novel Coronavirus (SARS-CoV-2) using molecular docking approach. 2020.

21. WHO, 2019. WHO global report on traditional and complementary medicine.

22. Abdullahi A.A. Trends and challenges of traditional medicine in Africa. Afr J Tradit Complement Altern Med. 2011;8:115–123. https://doi.org/10.4314/ajtcam.v8i5s.5

23. WHO, 2009. Guidelines for Pharmacological Management of Pandemic Influenza A (H1N1) 2009 Influenza and Other Influenza Viruses. Geneva: World Health Organization; 20 August 2009.

24. Baz M., Abed Y., Papenburg J., Bouhy X., Hamelin M.E., Boivin G. Emergence of oseltamivir-resistant pandemic H1N1 virus during prophylaxis. N Engl J Med. 2009;361:2296-7. https://doi.org/10.1056/NEJMc09100 [PMID: 19907034]

25. Su Y.-C., Huang G.-J., Lin J. Chinese herbal prescriptions for COVID-19 management: Special reference to Taiwan Chingguan Yihau (NRICM101). Front. Pharmacol. 2022;(13):928106. https://doi.org/10.3389/fphar.2022.928106

26. Zhang Y., Wang Z., Zhang Y., Tong H., Zhang Y., Lu T. Potential mechanisms for traditional Chinese medicine in treating airway mucus hypersecretion associated with coronavirus disease 2019. Front. Mol. Biosci. 2020;(7):577285. https://doi.org/10.3389/fmolb.2020.577285

27. Luo L. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharmaceutica Sinica B. 2020;10(7):1192–204. https://doi.org/10.1016/j.apsb.2020.05.007

28. Chan K. Chinese medicinal materials and their interface with Western medical concepts. J Ethnopharmacol. 2005;96:1-18. [PMID: 15588645] https://doi.org/10.1016/j.jep.2004.09.019

29. Wang Y., Zhang D., Du G., Du R., Zhao J., Jin Y., Fu S., Gao L., Cheng Z., Lu Q., Hu Y. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet. 2020 Apr 29. https://doi.org/10.1016/s0140-6736(20)31022-9

30. Wang C., Cao B., Liu Q.-Q., Zou Z.-Q., Liang Z.-A, Gu L., Dong J.- P., Liang L.-R., Li X.-W., Hu K., He X.-S. Oseltamivir compared with the Chinese traditional therapy Maxingshigan–Yinqiaosan in the treatment of H1N1 influenza: a randomized trial. Annals of internal medicine. 2011 Aug 16;155(4):217-25. https://doi.org/10.7326/0003-4819-155-4-201108160-00005

31. World Health Organization (WHO). 2010. Guidelines for the treatment of malaria.

32. Chen and T. Nakamura, Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytother. Res. 2004;(18):592–594. https://doi.org/10.1002/ptr.1485

33. Tillu G., Chaturvedi S., Chopra A., Patwardhan B. Public health approach of Ayurveda and Yoga for COVID-19 prophylaxis. The Journal of Alternative and Complementary Medicine. 2020 May 1, 2020;26(5):360-364. https://doi.org/10.1089/acm.2020.0129

34. Li X., Zhang X., Ding J., Xu Y., Wei D. Comparison between Chinese herbal medicines and conventional therapy in the treatment of severe hand, foot, and mouth disease: a randomized controlled trial. Evidence-Based Complementary and Alternative Medicine. 2014.

35. Akram M., Ugariogu S.N., Sagheer M.S., Saeed M.M., Tahir I.M., Duru I.A., Abah C.V. The Potentials of Medicinal Plants in the Treatment of Covid-19 Patients: A Review. Int J Pharmacogn Chinese Med. 2021;5(1):000212.

36. Yang Y., Islam M.S., Wang J., Li Y., Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. International journal of biological sciences. 2020;16(10):1708-1717. https://doi.org/10.7150/ijbs.45538

37. Khan M.F., Khan M.A., Khan Z.A., Ahamad T., Ansari W.A. Identification of Dietary Molecules as Therapeutic Agents to Combat COVID-19 Using Molecular Docking Studies. Research Square. 2020;1–17. https://doi.org/10.21203/rs.3.rs-19560/v1

38. Wu W., Li R., Li X., He J., Jiang S., Liu S., Yang J. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2016;8(1):6. http://dx.doi.org/10.3390/v8010006

39. Nakamoto, K. Kunimura, J. I. Suzuki, Kodera Y. Antimicrobial properties of hydrophobic compounds in garlic: allicin, vinyldithiin, ajoene and diallyl polysulfides. Experimental and @erapeutic Medicine. 2020;19(2):1550–1553. https://doi.org/10.3892/etm.2019.8388

40. Tefera Belachew, Makeda Sinaga. 2020. Narrative Review. Department of Nutrition and Dietetics, Faculty of Public Health, Institute of Jimma University.

41. Abdurahman H.N., Ranitha M., Azhari H.N. Extraction and characterization of essential oil from Ginger (Zingiber officinale roscoe) and Lemongrass (Cymbopogon citratus) by microwave-assisted Hydrodistillation. Int J Chem Environ Eng. 2013;4:221–226.

42. Otunola G.A., Afolayan A.J. Antidiabetic effect of combined spices of Allium sativum, Zingiber officinale and Capsicum frutescens in alloxaninduced diabetic rats. Front Life Sci. 2015;4(4):314–323. https://doi.org/10.1080/21553769.2015.1053628

43. Taoheed A.A., Tolulope A.A., Saidu A.B., Odewumi O., Sunday R.M., Usman M. Phytochemical properties, proximate and mineral composition of Curcuma longa Linn. and Zingiber officinale Rosc.: A comparative study. J Sci Res Rep. 2017;13(4):1–7. https://doi.org/10.9734/JSRR/2017/32623

44. Zhang M., Viennois E., Prasad M., Zhang Y., Wang L., Zhang Z. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–340. https://doi.org/10.1016/j.biomaterials.2016.06.018

45. Mao Q.Q., Xu X.Y., Cao S.Y., Gan R.Y., Corke H., Beta T., Li H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185–190. https://doi.org/10.3390/foods8060185

46. Adeleye A.O., Femi-Oyewo N.M., Bamiro A.O., Bakre G.L., Alabi A., Ashidi S.J., Balogun-Agbaje A.O., Hassan M.O., Gbemisola Fakoya. Ethnomedicinal herbs in African traditional medicine with potential activity for the prevention, treatment, and management of COVID-2019. Future Journal of Pharmaceutical Sciences. 2021;7:72. https://doi.org/10.1186/s43094-021-00223-5

47. Mashhadi N.S., Ghiasvand R., Askari G., Hariri M., Darvishi L., Mofid M.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. International journal of preventive medicine. 2013;4(1):S36.

48. Prasad A., Muthamilarasan M., Prasad M. Synergistic antiviral effects against SARS-CoV-2 by plant-based molecules. Plant Cell Rep. 2020;39(9):1109–1114. https://doi.org/10.1007/s00299-020-02560-w

49. Laksmiani N.L., Larasanty L.P., Santika A.J., Prayoga P.A., Dewi A.K., Dewi N.K. Active Compounds Activity from the Medicinal Plants Against SARSCoV-2 using in Silico Assay. Biomed Pharmacol J. 2020;13(2):873–881. https://doi.org/10.13005/bpj/1953

50. Omosa L.K., Midiwo O., Kuete V. Medicinal spices and vegetables from Africa therapeutic potential against metabolic, inflammatory, infectious and systemic diseases, Curcuma longa. Elservier, Amsterdam, 2017. 425–435.

51. Sahne F., Mohammadi M., Najafpour G.D., Moghadamnia A.A. Enzyme assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): Isolation, purification and analysis of curcumin. Indusrial Crops and Products. 2017;95:686–694. https://doi.org/10.1016/j.indcrop.2016.11.037

52. Pal K., Chowdhury S., Dutta S.K., Chakraborty S., Chakraborty M., Pandit G.K. Analysis of rhizome colour content, bioactive compound profiling and ex-situ conservation of turmeric genotypes (Curcuma longa L.) from sub-Himalayan terai region of India. Ind Crops Prod. 2020;150:112401. https://doi.org/10.1016/j.indcrop.2020.112401

53. Ayati Z., Ramezani M., Amiri M.S., Moghadam A.T., Rahimi H., Abdollahzade A., Sahebkar A., Emami S.A. Ethnobotany, phytochemistry and traditional uses of curcuma spp. and pharmacological profile of two important species (C.longa and C. zedoaria): A review. Curr Pharm Des. 2019;25(8):871–935. https://doi.org/10.2174/1381612825666190402163940

54. Saronee F., Bekinbo M.T., Ojeka S.O., Dapper D.V. Comparative assessment of methanolic extracts of hog plum (Spondias mombin linn.) leaves and turmeric (Curcuma longa) rhizomes on blood glucose and glycosylated haemoglobin in male wistar rats. J Appl Sci Environ Manage. 2019;23(9):1631–1636.

55. Wen C.C., Kuo Y.H., Jan J.T., Liang P.H., Wang S.Y., Liu H.G., Lee C.K., Chang S.T., Kuo C.J., Lee S.S., Hou C.C., Hsiao P.W., Chien S.C., Shyur L.F., Yang N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007;50(17):4087–4095.

56. Abodunrin O.P.; Onifade O.F.; Adegboyega A.E. Therapeutic capability of five active compounds in typical African medicinal plants against main proteases of SARS-CoV-2 by computational approach. Inform. Med. Unlocked. 2022;(31):100964. https://doi.org/10.1016/j.imu.2022.100964

57. Zahedipour F., Hosseini S.A., Sathyapalan T., et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res. 2020;34(11):2911-2920. https://doi.org/10.1002/ptr.6738

58. Soleymani S., Naghizadeh A., Zargaran A., Karimi M., Mardi R., Kordafshari G., Esmaealzadeh N. COVID-19: General Strategies for Herbal Therapies. Journal of Evidence-Based Integrative Medicine. 2022;(27):1-18,. https://doi.org/10.1177/2515690X211053641

59. Pawar K.S.; Mastud R.N.; Pawar S.K.; Pawar S.S.; Bhoite R.R.; Bhoite R.R.; Kulkarni M.V.; Deshpande A.R. Oral Curcumin with Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial. Front. Pharmacol. 2021;(12):669362.

60. Zahedipour F., Hosseini S.A., Sathyapalan T., Majeed M., Jamialahmadi T., Al-Rasadi K. Potential effects of curcumin in the treatment of COVID -19 infection. Phytother Res. 2020;34(11):1–10. https://doi.org/10.1002/ptr.6738

61. Liu Z., Ying Y. The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front Cell Dev Biol. 2020;8:479. https://doi.org/10.3389/fcell.2020.00479

62. Prasanth DSNBK, Murahari M., Chandramohan V., Panda S.P., Atmakuri L.R., Guntupalli C. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARSCoV-2. J Biomol Struct Dyn. 2021;39(13):4618-32. https://doi.org/10.1080/07391102.2020.1779129

63. Shanmugarajan D.; Prabitha P.; Kumar B.P.; Suresh B. Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: Computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets. RSC Adv. 2020;10:31385–31399. https://doi.org/10.1039/d0ra03167d

64. Dhar S.; Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J. Funct. Foods. 2021;(82):104503. https://doi.org/10.1016/j.jff.2021.104503

65. Duke J.A. Handbook of medicinal herbs. CRC Press. 2002.

66. Sharma N.K., Ahirwar D., Jhade D., Gupta S. Medicinal and phamacological potential of nigella sativa: a review. Ethnobotanical Review. 2009;13:946-55.

67. Ahmad A., Husain A., Mujeeb M., Khan S.A., Najmi A.K., Siddique N.A. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed. 2013;3(5):337–352.

68. Molla S., Azad M.K., Al Hasib M.A., Hossain M.M., Ahammed M.S., Rana S. A review on antiviral effects of Nigella sativa L. Pharmacologyonline. 2019;2:47–53.

69. Islam M.N., Hossain K.S., Sarker P.P., Ferdous J., Hannan M.A., Rahman M.M. Revisiting pharmacological potentials of Nigella sativa seed: a promising option for COVID-19 prevention and cure. OSF Preprints. 2020.

70. Sahak M.K., Kabir N., Abbas G., Draman S., Hashim N.H., Hasan Adli D.S. The role of nigella sativa and its active constituents in learning and memory. Evid Based Complement Alternat Med. 2016; 1–6.

71. Woo C.C., Kumar A.P., Sethi G., Tan K.H. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochemical Pharmacology. 2012;83(4):443-51.

72. Xiao J., Ke Z.P., Shi Y., Zeng Q., Cao Z. The cardioprotective effect of thymoquinone on ischemia-reperfusion injury in isolated rat heart via regulation of apoptosis and autophagy. Journal of Cellular Biochemistry. 2018;119(9):7212-7. https://doi.org/10.1002/jcb.26878

73. Hannan M.A., Rahman M.A., Rahman M.S., Sohag A.A., Dash R., Hossain K.S. Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: crosstalk among calorie restriction, autophagy and immune response. Immunol. Lett. 2020;226:38–45. https://doi.org/10.31219/osf.io/jt738

74. Umar S., Munir M.T., Subhan S., Azam T., Nisa Q., Khan M.I. Protective and antiviral activities of Nigella sativa against avian influenza (H9N2) in turkeys. J. Saudi Soc. Agric. Sci. 2016.

75. Onifade A., Jewell A.P., Adedeji W. Nigella sativa concoction induced sustained seroreversion in HIV patient. African Journal of Traditional, Complementary and Alternative Medicines. 2013;10(5):332-5.

76. Khan A.U., Tipu M.Y., Shafee M., Khan N.U., Tariq M.M., Kiani M.R. In-vivo antiviral effect of Nigella sativa extract against Newcastle Disease Virus in experimentally infected chicken embryonated eggs. Pakistan Veterinary Journal. 2018;38:434-7.

77. Eldeeb E., Belal A. Two promising herbs that may help in delaying corona virus progression. Int J Trend Sci Res Dev. 2020;4(4):764–766.

78. Rahman M.T. Potential benefits of combination of Nigella sativa and zn supplements to treat COVID-19. J Herb Med. 2020;23:100382. https://doi.org/10.1016/j.hermed.2020.100382

79. Elfiky A.A. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J. Biomol. Struct. Dyn. 2021;(39):3194–3203. https://doi.org/10.1080/07391102.2020.1761881

80. Jakhmola Mani R.; Sehgal N.; Dogra N.; Saxena S.; Pande Katare D. Deciphering underlying mechanism of SARS-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID19: In-silico study. J. Biomol. Struct. Dyn. 2022;(40):2417–2429. https://doi.org/10.1080/07391102.2020.1839560

81. Petrovska B.B., Cekovska S. Extracts from the history and medical properties of garlic. Pharmacogn Rev. 2010;4(7):106–110.

82. Sulaiman F.A., Kazeem M.O., Waheed A.M., Temowo S.O., Azeez I.O., Faridat I. Antimicrobial and toxic potential of aqueous extracts of Allium sativum, Hibiscus sabdariffa and Zingiber officinale in Wistar rats. J Taibah Univ Sci. 2014;8(4):315–322.

83. Kumar P., Yadav J., Jain M., Yadav P, Goel AK, Yadava PM. Bactericidal efficacy of Allium sativum against multidrug resistant Vibrio cholera o1 epidemic strains. Defence Sci J. 2016;66(5):479–484.

84. Batiha G.E., Beshbishy A.M., Wasef L.G., Elewa Y.H., Al-Sagan A.A., Abd El-Hack M.E. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020;12(3):872. https://doi.org/10.3390/nu12030872

85. Keyaerts E., Vijgen L., Pannecouque C., Damme E.V., Peumans W., Egberink H. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007;75(3):179–187.

86. Thuy B.T., My T.T., Hai N.T., Hieu L.T., Hoa T.T., Loan H.T. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega. 2020;5(14):8312–8320. https://doi.org/10.1021/acsomega.0c00772

87. Nafissa B.; Abdelkrim M.; Abderrahmane R.; Abdelkrim K.; Fatma, G. Etude préliminaire de l’Effet de l’ail (Allium sativum L.) chez des malades atteints du SARS-CoV-2. Alger. J. Health Sci. 2021;(3):9–14.

88. Donma M.M., Donma O. The effects of Allium Sativum on immunity within the scope of COVID-19 infection. Med Hypotheses. 2020;144:109934. https://doi.org/10.1016/j.mehy.2020.109934.


Рецензия

Для цитирования:


Хасан Д.К., Ями А.С. Потенциальные лекарственные растения, используемые при лечении COVID-19. Обзор. Овощи России. 2025;(2):61-69. https://doi.org/10.18619/2072-9146-2025-2-61-69

For citation:


Hasan J.K., Yami A.S. Potential medicinal plants used in the treatment of COVID-19: a review. Vegetable crops of Russia. 2025;(2):61-69. (In Russ.) https://doi.org/10.18619/2072-9146-2025-2-61-69

Просмотров: 216


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)