Preview

Vegetable crops of Russia

Advanced search

Potential of the VIR Spinach collection for use in breeding

https://doi.org/10.18619/2072-9146-2025-2-36-44

Abstract

Relevance. Spinach (Spinacia oleracea L.) is an economically important vegetable crop grown all over the world. This is an annual, cold-resistant and early-ripening crop, cultivated both in protected and open ground. Therefore, there is a need for a wide diversity of varieties and hybrids adapted to specific conditions. The State Register of Breeding Achievements of the Russian Federation contains 67 varieties and hybrids of spinach, of which 66% are foreign hybrid selection. The creation of domestic spinach hybrids is complicated by the lack of well-studied initial material: aligned genotypes of the gynoecic type, combining high yield, early maturity and rich biochemical composition.

Materials and Methods. Genetic diversity of crops – potential for breeding and active study in the light of modern knowledge and technologies. The spinach collection collected at the Vavilov All-Russian Institute of Plant Genetic Resources (VIR), which has a 90- year history, includes 744 samples and is the largest in the world. It is unique in the diversity and origin of its accessions.

Results. The collection contains high-yielding, early-ripening, late-blooming genotypes; lines with a predominance of the female type of flowering, polyploids are being created. Characteristic groups have been created based on plasticity and high content of valuable biochemicals. As a result of many years of comprehensive study of the spinach collection, the genotypes recommended for inclusion in breeding schemes were identified.

Conclusion. The diverse, well-studied gene pool of spinach preserved at the institute is capable of providing unlimited opportunities for breeding and meeting the needs of the country's population, enriching the diet with leafy crop rich in pigments, lutein and protein, with a high content of phenolic elements and antioxidant activity.

About the Authors

E. G. Kiselev
N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

Evgenii G. Kiselev – Postgraduate Student of the Department of Genetic Resources of Vegetable and Melon Crops of VIR

42, 44 Bolshaya Morskaya Street, St. Petersburg, 190000



D. V. Sokolova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

Diana V. Sokolova – Cand. Sci. (Biology), Senior Researcher, Department of Genetic Resources of Vegetable and Melon Crops, Curator of the Beet and Amaranth Collection

42, 44 Bolshaya Morskaya Street, St. Petersburg, 190000



References

1. Roberts J.L., Moreau R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food & Function. 2016;7(8):3337–3353. https://doi.org/10.1039/c6fo00051g

2. Mukhanova Yu.I., Trebukhina K.A. Expand assortment. Potato and vegetables. 1987;1:23-25. (In Russ.)

3. Pivovarov V.F. Vegetables of Russia. Moscow: Russian seeds. 1994. (In Russ.)

4. Shivrina A.N. Biochemistry of spinach, sorrel, rhubarb. In the book: Biochemistry of vegetable crops. Moscow. 1961. p.304- 324 [ed. by I. Ermakov, V. V. Arasimovich] https://rusneb.ru/catalog/000199_000009_005943653/ (date of access: 14.01.2025)

5. Pokrovsky A.A. Chemical composition of food products. Moscow, 1976. P.76-77. (ed. by M.F. Nesterin, I.M. Skurikhin) https://rusneb.ru/catalog/000200_000018_rc_2234586/ (15.01.2025)

6. Sokolova D.V., Solovieva A.E. Characterization of the biochemical compositionand antioxidant activity of Spinacia oleracea L. and Spinacia turkestanica Iljin.: a comparative study. Vegetable crops of Russia. 2023;(4):23-29. https://doi.org/10.18619/2072-9146-2023-4-23-29

7. Longnecker M.P., Newcomb P.A., Mittendorf R., Greenberg E.R., Willett W.C. Intake of carrots, spinach, and supplements containing vitamin A in relation to risk of breast cancer. Cancer Epidemiol Biomarkers Prev.1997;6(11): 87–892.

8. Wang R., Furumoto T., Motoyama K., Okazaki K., Kondo A., Fukui H. Possible Antitumor Promoters in Spinacia oleracea (Spinach) and Comparison of their Contents among Cultivars. Bioscience, Biotechnology, and Biochemistry. 2002;66(2):248–254. https://doi.org/10.1271/bbb.66.248

9. Kuriyama I., Musumi K., Yonezawa Y., Takemura M., Maeda N., Iijima H., … Mizushina Y. Inhibitory effects of glycolipids fraction from spinach on mammalian DNA polymerase activity and human cancer cell proliferation. The Journal of Nutritional Biochemistry. 2005;16(10):594–601. https://doi.org/10.1016/j.jnutbio.2005.02.007

10. Maeda N., Matsubara K., Yoshida H., Mizushina Y. Anti-cancer Effect of Spinach Glycoglycerolipids as Angiogenesis Inhibitors Based on the Selective Inhibition of DNA Polymerase Activity. Mini-Reviews in Medicinal Chemistry. 2011;11(1):32–38. https://doi.org/10.2174/138955711793564042

11. Sidorova Y.S., Petrov N.A., Shipelin V.A., Mazo V.K. Spinach and quinoa - prospective food sources of biologically active substances. Voprosy Pitaniia. 2020;89(2):100-106. https://doi.org/10.24411/0042-8833-2020-10020 (In Russ.)

12. Ryder E.J. Spinach. Leafy Salad Vegetables. 1979. 195–227. https://doi.org/10.1007/978-94-011-9699-4_6

13. Morelock T.E., Correll J.C. Spinach. In: Vegetables I. Handbook of plant breeding. (ed. by Prohens J., Nuez F.). Springer, New York. 2008. https://doi.org/.1007/978-0-387-30443-4_6

14. Bergquist S.Å.M., Gertsson U.E., Nordmark L.Y.G., Olsson M.E. Ascorbic Acid, Carotenoids, and Visual Quality of Baby Spinach as Affected by Shade Netting and Postharvest Storage. Journal of Agricultural and Food Chemistry. 2007;55(21):8444–8451. https://doi.org/10.1021/jf070396z

15. Li L.H., Lee J.C.-Y., Leung H.H., Lam W.C., Fu Z., Lo A.C.Y. Lutein Supplementation for Eye Diseases. Nutrients. 2020;12(6):1721. https://doi.org/10.3390/nu12061721

16. Murray I.J., Makridaki M., van der Veen R.L.P., Carden D., Parry N.R.A., Berendschot T.T.J.M. Lutein Supplementation over a One-Year Period in Early AMD Might Have a Mild Beneficial Effect on Visual Acuity: The CLEAR Study. Investigative Opthalmology & Visual Science. 2013;54(3):1781. https://doi.org/10.1167/iovs.12-10715

17. Manayi A., Abdollahi M., Raman T., Nabavi S.F., Habtemariam S., Daglia M., Nabavi S.M. Lutein and cataract: from bench to bedside. Critical Reviews in Biotechnology. 2015;36(5):829–839. https://doi.org/10.3109/07388551.2015.1049510

18. Food and Agriculture Organization of the United Nations (FAO), FAOSTAT, 2023. https://www.fao.org/faostat/en/#data/QCL (date of access: 14.01.2025)

19. Deleuran L.C. Innovation in vegetable seed production and the role of consumers in the organic and conventional babyleaf chains: The case of Denmark. Renewable Agriculture and Food Systems. 2010;26(02):149–160. https://doi.org/10.1017/s1742170510000530

20. State Register for Selection Achievements Admitted for Usage. 2024. https://gossortrf.ru/publication/reestry.php (date of access: 14.01.2025). (In Russ.) 21. Rubatzky V.E., Yamaguchi M. Spinach, Table Beets, and Other Vegetable Chenopods. In World Vegetables: Principles, Production, and Nutritive Values. Springer, 1997:457-473. https://doi.org/10.1007/978-1-4615-6015-9_21

21. Dekandol' A. Place of origin of cultivated plants: Translation from the 2nd fr. ed. with add. according to later sources. Dr. Chr. Gobi, prof. St. Petersburg. university (ed.). St. Petersburg: K. Ricker, 1885:96-98. (in Russian) https://rusneb.ru/catalog/000199_000009_003599056/ (date of access: 14.01.2025)

22. Hu J., Mou B., Vick B.A. Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genetic Resources and Crop Evolution. 2007;54(8):1667–1674. https://doi.org/10.1007/s10722-006-9175-4

23. Hallavant C., Ruas M.-P. The first archaeobotanical evidence of Spinacia oleracea L. (spinach) in late 12th–mid 13th century a.d. France. Vegetation History and Archaeobotany. 2013;23(2):153–165. https://doi.org/10.1007/s00334-013-0400-8

24. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society. 2003;141(4):399–436. https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x

25. Girenko M.M. Variability of plant sex in different varieties of spinach. Proceedings on Applied Botany, Genetics and Breeding. 1962;35(1):74-78 (In Russ.)

26. Fujito S., Takahata S., Suzuki R., Hoshino Y., Ohmido N., Onodera Y. Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. Genes|Genomes|Genetics. 2015;5:1663–1673. https://doi.org/10.1534/g3.115.018671

27. Xu C., Jiao C., Sun H., Cai X., Wang X., Ge C., … Wang Q. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications. 2017;8:15275. https://doi.org/10.1038/ncomms15275

28. Simoons F.J. Food in China. A Cultural and Historical Inquiry. CRC Press, Boston. 1990

29. Girenko M.M. Initial material for breeding of leafy green crops in the northwestern zone of the USSR (spinach, lettuce, dill) [dissertation]. Leningrad; 1965. https://search.rsl.ru/ru/record/01000786532

30. Shi A., Qin J., Mou B., Correll J., Weng Y., Brenner D., … Ravelombola W. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. PLOS ONE. 2017;12(11):e0188745. https://doi.org/10.1371/journal.pone.0188745

31. Khattak J.Z.K., Torp A.M., Andersen S.B. A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica. 2006;148:311–318. https://doi.org/10.1007/s10681-005-9031-1

32. Sneep J. The present position of spinach breeding. Euphytica, 1958а;7(1):1–8. https://doi.org/10.1007/bf00037858

33. Komai F., Masuda K. Plasticity in sex expression of spinach (Spinacia oleracea) regenerated from root tissues. Plant Cell Tissue and Organ Culture. 2004;78:285–287. https://doi.org/10.1023/B:TICU.0000025665.74491.1e

34. Pandey S.C., Kalloo G. Spinach. Genetic Improvement of Vegetable Crops. 1993;325–336. https://doi.org/10.1016/b978-0-08-040826-2.50027-8

35. Mikhov A.S., Alipieva M. Practical vegetable growing. Moscow. Kolos. 1980. (In Russ.)

36. Ribera A., Bai Y., Wolters A.-M. A., van Treuren R., Kik C. A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica. 2020;216(3). https://doi.org/10.1007/s10681-020-02585-y

37. Vilmorin-Andrieux. Description des Plantes Potage`res. Vilmorin Andrieux & Cie. 1855. Paris, pp. 127-130. https://gallica.bnf.fr/ark:/12148/bpt6k10250876/f5.item

38. Vilmorin-Andrieux. Les Plantes Potage`res. Vilmorin Andrieux & Cie. 1883. Paris, pp. 202–206. https://gallica.bnf.fr/ark:/12148/bpt6k9641303z/f9.image.texteImage

39. Gibault G. Histoire des légumes. Paris: Libraire Horticole. 1912. pp 81-88. https://gallica.bnf.fr/ark:/12148/bpt6k6422705t/f5.item

40. Smith L.B. Breeding mosaic resistant spinach and notes on malnutrition. Bulletin. Virginia Truck Experiment Station. 1920;31:137–160

41. Cook H.T., Nugent T.J., Paris G.K., Porter R.P. Fusarium wilt of spinach and the development of wilt resistant variety. Va. Truck Exp. Sta. 1947;110:1810–1820.

42. Sherbakoff C.D. Breeding for resistance to Fusarium and Verticillium wilts. The Botanical Review. 1949;15(6):377–422. https://doi.org/10.1007/bf02861698

43. Sneep J. The breeding of hybrid varieties and the production of hybrid seed in spinach. Euphytica. 1958;7(2):119–122. https://doi.org/10.1007/bf00035724

44. Jones R.K. Occurrence of race 3 of Peronospora effusa on spinach in Texas and identification of sources of resistance. Plant Disease. 1982;66(1):1078. https://doi.org/10.1094/PD-66-1078

45. Thompson A.E. The extent of natural crossing in inbred monoecious spinach lines. Proceedings. American Society for Horticultural Science. 1954;64:405-09.

46. Thompson A.E. The extent of hybrid vigor in spinach. Proceedings. American Society for Horticultural Science. 1956;67:440-4.

47. Smith P.G., Zahara M.B. New spinach immune to mildew: hybrid variety developed by plant breeding program intended for use where Viroflay is adapted, produces comparable yield. Hilgardia. 1956;10(7):15–15.

48. Zink F.W., Smith P.G. A second physiological race of spinach downy mildew. Plant Disease. 1958;42:818.

49. Smith P.G., Webb R.E., Millett A.M., Luhn C.H. Downy mildew on spinach: a second race of fungus has been found on Califlay variety in the coastal valley area of California. California Agriculture 1961;15(10):5–5. https://californiaagriculture.org/article/113287 (date of access: 14.01.2025)

50. Eenink A.H. Linkage in Spinacia oleracea L. of two racespecific genes for resistance to downy mildew Peronospora farinosa f. sp. Spinaciae Byford. Euphytica 1976;25:713–715. doi.org/10.1007/bf00041610

51. Jones R.K., Dainello F.J. Occurrence of race 3 of Peronospora effusa on spinach in Texas and identification of sources of resistance. Plant Disease. 1982;66:1078–1079. https://doi.org/10.1094/PD-66-1078

52. Correll J.C., Morelock T.E., Black M.C., Koike S.T., Brandenberger L.P., Dainello F.J. Economically important diseases of spinach. Plant Disease. 1994;78:653–660.

53. Feng C., Saito K., Liu B., Manley A., Kammeijer K., Mauzey S. J., … Correll J. C. New Races and Novel Strains of the Spinach Downy Mildew Pathogen Peronospora effusa. Plant Disease. 2018;102(3):613–618. https://doi.org/10.1094/pdis-05-17-0781-re

54. The International Spinach Database (ISDB), Available online: https://ecpgr.cgn.wur.nl/lvintro/spinach/con_spec.htm (date of access: 14.01.2025)

55. Van Treuren R., Coquin P., Lohwasser U. Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): composition and gaps. Genetic Resources and Crop Evolution. 2012;59(6):981–997. https://doi.org/10.1007/s10722-011-9738-x

56. Van Treuren R., de Groot L., Hisoriev H., Khassanov F., Farzaliyev V., Melyan G., Gabrielyan I., van Soest L., Tulmans C., Courand D., de Visser J., Kimura R., Boshoven J.C., Janda T., Goossens R., Verhoef M., Dijkstra J., Kik C.Acquisition and regeneration of Spinacia turkestanica and S. tetrandra Steven ex M. Bieb. to improve a spinach gene bank collection. Genetic Resources and Crop Evolution. 2019. https://doi.org/10.1007/s10722-019-00792-8

57. Qian W., Feng C.D., Zhang H.L., Liu W., Xu D.H., Correll J.C., Xu Z.S. First report of race diversity of the spinach downy mildew pathogen, Peronospora effusa, in China. Plant Disease. 2016;100:1248. https://doi.org/10.1094/PDIS-08-15-0847-PDN

58. Sattler M.C., Carvalho C.R., Clarindo W.R. The polyploidy and its key role in plant breeding. Planta. 2015;243(2):281–296. https://doi.org/10.1007/s00425-015-2450-x

59. Ito M., Ohmido N., Akiyama Y., Fukui K., Koba T. Characterization of spinach chromosomes by condensation patterns and physical mapping of 5S and 45S rDNAs by FISH. Journal of the American Society for Horticultural Science. 2000;125(1):59-62. https://doi.org/10.21273/JASHS.125.1.59

60. Bragdo M. Breeding of polyploid spinach. Euphytica. 1962;11:143–148 https://doi.org/10.1007/BF00033786

61. Roughani A., Miri S.M., Kashi A.K., Khiabani B.N. Increasing the ploidy level in spinach (Spinacia oleracea L.) using mitotic inhibitors. Plant cell biotechnology and molecular biology. 2017;18(3-4):124-130.

62. Murphy J.B., Morelock T.E. Spinach breeding program yields lines containing high levels of carotenoid antioxidants. In: Richardson M.D., Clark J.R. (eds) Horticultural studies, research series. 2000; 475. University of Arkansas, Fayetteville, pp 36–39.

63. Howard L.R., Pandjaitan N., Morelock T., Gil M.I. Antioxidant Capacity and Phenolic Content of Spinach As Affected by Genetics and Growing Season. Journal of Agricultural and Food Chemistry. 2002;50(21):5891–5896. https://doi.org/10.1021/jf020507o

64. EURISCO. European Search Catalogue for Plant Genetic Resources. https://eurisco.ipkgatersleben.de/apex/eurisco_ws/r/eurisco/cropsearchresult1?p17_crop=spinach&p17_ce=N (дата обращения 15.01.2025)

65. Sokolova D.V., Zaretsky A.M. Study of genetic resources of representatives of the amaranth family (Amaranthaceae Juss.) at the Polar Experimental Station of VIR. Abstracts of reports. Series "Northern agriculture. Issue 1". VIR. 2023. https://doi.org/10.30901/978-5-907145-97-9 https://www.vir.nw.ru/wp-content/uploads/2023/09/Severnoezemledelie_Ovoshhnye-kultury_nauchnyj-seminar-v-ramkah100-letiya-severnogo-zemledeliya-posvyashhennyj-90-letiyu-sodnya-rozhdeniya-L.-V.-Sazonovoj_2023.pdf (date of access: 14.01.2025) (In Russ.)

66. Kiselev E.G., Sokolova D.V. Study of the VIR spinach collection for early maturity and sex divergence in ontogenesis at different sowing dates in the conditions of the North-West region of the Russian Federation. Abstracts of the Conference "VIR - 130: Plant Genetic Resources".2024. (In Russ.).


Review

For citations:


Kiselev E.G., Sokolova D.V. Potential of the VIR Spinach collection for use in breeding. Vegetable crops of Russia. 2025;(2):36-44. (In Russ.) https://doi.org/10.18619/2072-9146-2025-2-36-44

Views: 178


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)