Preview

Овощи России

Расширенный поиск

Потенциал коллекции шпината ВИР для использования в селекции

https://doi.org/10.18619/2072-9146-2025-2-36-44

Аннотация

Актуальность. Шпинат (Spinacia oleracea L.) экономически значимая овощная культура, выращиваемая во всем мире. Это однолетняя холодостойкая и скороспелая культура, культивируемая как в защищенном, так и в открытом грунте. Поэтому, существует потребность в большом разнообразии сортов и гибридов, приспособленных к конкретным условиям. В Государственном реестре селекционных достижений РФ содержится 67 сортов и гибридов шпината, из которых на долю иностранной гибридной селекции приходится 66%. Создание отечественных гибридов шпината осложняется недостатком хорошо изученного исходного материала: выровненных генотипов гиноэцичного типа, сочетающих высокую урожайность, скороспелость и богатый биохимический состав.

Материалы и методы. Генетическое разнообразие культуры - потенциал для селекционного использования и активного изучения в свете современных знаний и технологий. Собранная в Всероссийском институте генетических ресурсов растений имени Н.И. Вавилова (ВИР) коллекция шпината, имеющая 90-летнюю историю, включает 744 образца и является самой большой в мире. Она уникальна по разнообразию и происхождению образцов.

Результаты. В коллекции имеются высокоурожайные, скороспелые, поздно-зацветающие генотипы, создаются линии с преобладанием женского типа цветения, полиплоиды. Созданы признаковые группы по пластичности, высокому содержанию ценных биохимических веществ. В результате многолетнего всестороннего изучения коллекции шпината выделены генотипы, рекомендующиеся для включения в селекционные схемы.

Заключение. Сохраняемый в институте разнообразный хорошо изученный генофонд шпината способен предоставлять неограниченные возможности для селекции и восполнять нужды населения страны, обогащая рацион богатой пигментами, лютеином и белком листовой культурой с высоким содержанием фенольных элементов и антиоксидантной активностью.

Об авторах

Е. Г. Киселев
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова
Россия

Евгений Геннадьевич Киселев – аспирант Отдела генетических ресурсов овощных и бахчевых культур ВИР

190000, г. Санкт-Петербург, ул. Б. Морская, 42, 44



Д. В. Соколова
Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова
Россия

Диана Викторовна Соколова – кандидат биол. наук, старший научный сотрудник отдела генетических ресурсов овощных и бахчевых культур, куратор коллекции свеклы и амаранта

190000, г. Санкт-Петербург, ул. Б. Морская, 42, 44



Список литературы

1. Roberts J.L., Moreau R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food & Function. 2016;7(8):3337–3353. https://doi.org/10.1039/c6fo00051g

2. Mukhanova Yu.I., Trebukhina K.A. Expand assortment. Potato and vegetables. 1987;1:23-25. (In Russ.)

3. Pivovarov V.F. Vegetables of Russia. Moscow: Russian seeds. 1994. (In Russ.)

4. Shivrina A.N. Biochemistry of spinach, sorrel, rhubarb. In the book: Biochemistry of vegetable crops. Moscow. 1961. p.304- 324 [ed. by I. Ermakov, V. V. Arasimovich] https://rusneb.ru/catalog/000199_000009_005943653/ (date of access: 14.01.2025)

5. Pokrovsky A.A. Chemical composition of food products. Moscow, 1976. P.76-77. (ed. by M.F. Nesterin, I.M. Skurikhin) https://rusneb.ru/catalog/000200_000018_rc_2234586/ (15.01.2025)

6. Sokolova D.V., Solovieva A.E. Characterization of the biochemical compositionand antioxidant activity of Spinacia oleracea L. and Spinacia turkestanica Iljin.: a comparative study. Vegetable crops of Russia. 2023;(4):23-29. https://doi.org/10.18619/2072-9146-2023-4-23-29

7. Longnecker M.P., Newcomb P.A., Mittendorf R., Greenberg E.R., Willett W.C. Intake of carrots, spinach, and supplements containing vitamin A in relation to risk of breast cancer. Cancer Epidemiol Biomarkers Prev.1997;6(11): 87–892.

8. Wang R., Furumoto T., Motoyama K., Okazaki K., Kondo A., Fukui H. Possible Antitumor Promoters in Spinacia oleracea (Spinach) and Comparison of their Contents among Cultivars. Bioscience, Biotechnology, and Biochemistry. 2002;66(2):248–254. https://doi.org/10.1271/bbb.66.248

9. Kuriyama I., Musumi K., Yonezawa Y., Takemura M., Maeda N., Iijima H., … Mizushina Y. Inhibitory effects of glycolipids fraction from spinach on mammalian DNA polymerase activity and human cancer cell proliferation. The Journal of Nutritional Biochemistry. 2005;16(10):594–601. https://doi.org/10.1016/j.jnutbio.2005.02.007

10. Maeda N., Matsubara K., Yoshida H., Mizushina Y. Anti-cancer Effect of Spinach Glycoglycerolipids as Angiogenesis Inhibitors Based on the Selective Inhibition of DNA Polymerase Activity. Mini-Reviews in Medicinal Chemistry. 2011;11(1):32–38. https://doi.org/10.2174/138955711793564042

11. Sidorova Y.S., Petrov N.A., Shipelin V.A., Mazo V.K. Spinach and quinoa - prospective food sources of biologically active substances. Voprosy Pitaniia. 2020;89(2):100-106. https://doi.org/10.24411/0042-8833-2020-10020 (In Russ.)

12. Ryder E.J. Spinach. Leafy Salad Vegetables. 1979. 195–227. https://doi.org/10.1007/978-94-011-9699-4_6

13. Morelock T.E., Correll J.C. Spinach. In: Vegetables I. Handbook of plant breeding. (ed. by Prohens J., Nuez F.). Springer, New York. 2008. https://doi.org/.1007/978-0-387-30443-4_6

14. Bergquist S.Å.M., Gertsson U.E., Nordmark L.Y.G., Olsson M.E. Ascorbic Acid, Carotenoids, and Visual Quality of Baby Spinach as Affected by Shade Netting and Postharvest Storage. Journal of Agricultural and Food Chemistry. 2007;55(21):8444–8451. https://doi.org/10.1021/jf070396z

15. Li L.H., Lee J.C.-Y., Leung H.H., Lam W.C., Fu Z., Lo A.C.Y. Lutein Supplementation for Eye Diseases. Nutrients. 2020;12(6):1721. https://doi.org/10.3390/nu12061721

16. Murray I.J., Makridaki M., van der Veen R.L.P., Carden D., Parry N.R.A., Berendschot T.T.J.M. Lutein Supplementation over a One-Year Period in Early AMD Might Have a Mild Beneficial Effect on Visual Acuity: The CLEAR Study. Investigative Opthalmology & Visual Science. 2013;54(3):1781. https://doi.org/10.1167/iovs.12-10715

17. Manayi A., Abdollahi M., Raman T., Nabavi S.F., Habtemariam S., Daglia M., Nabavi S.M. Lutein and cataract: from bench to bedside. Critical Reviews in Biotechnology. 2015;36(5):829–839. https://doi.org/10.3109/07388551.2015.1049510

18. Food and Agriculture Organization of the United Nations (FAO), FAOSTAT, 2023. https://www.fao.org/faostat/en/#data/QCL (date of access: 14.01.2025)

19. Deleuran L.C. Innovation in vegetable seed production and the role of consumers in the organic and conventional babyleaf chains: The case of Denmark. Renewable Agriculture and Food Systems. 2010;26(02):149–160. https://doi.org/10.1017/s1742170510000530

20. State Register for Selection Achievements Admitted for Usage. 2024. https://gossortrf.ru/publication/reestry.php (date of access: 14.01.2025). (In Russ.) 21. Rubatzky V.E., Yamaguchi M. Spinach, Table Beets, and Other Vegetable Chenopods. In World Vegetables: Principles, Production, and Nutritive Values. Springer, 1997:457-473. https://doi.org/10.1007/978-1-4615-6015-9_21

21. Dekandol' A. Place of origin of cultivated plants: Translation from the 2nd fr. ed. with add. according to later sources. Dr. Chr. Gobi, prof. St. Petersburg. university (ed.). St. Petersburg: K. Ricker, 1885:96-98. (in Russian) https://rusneb.ru/catalog/000199_000009_003599056/ (date of access: 14.01.2025)

22. Hu J., Mou B., Vick B.A. Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genetic Resources and Crop Evolution. 2007;54(8):1667–1674. https://doi.org/10.1007/s10722-006-9175-4

23. Hallavant C., Ruas M.-P. The first archaeobotanical evidence of Spinacia oleracea L. (spinach) in late 12th–mid 13th century a.d. France. Vegetation History and Archaeobotany. 2013;23(2):153–165. https://doi.org/10.1007/s00334-013-0400-8

24. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society. 2003;141(4):399–436. https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x

25. Girenko M.M. Variability of plant sex in different varieties of spinach. Proceedings on Applied Botany, Genetics and Breeding. 1962;35(1):74-78 (In Russ.)

26. Fujito S., Takahata S., Suzuki R., Hoshino Y., Ohmido N., Onodera Y. Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. Genes|Genomes|Genetics. 2015;5:1663–1673. https://doi.org/10.1534/g3.115.018671

27. Xu C., Jiao C., Sun H., Cai X., Wang X., Ge C., … Wang Q. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications. 2017;8:15275. https://doi.org/10.1038/ncomms15275

28. Simoons F.J. Food in China. A Cultural and Historical Inquiry. CRC Press, Boston. 1990

29. Girenko M.M. Initial material for breeding of leafy green crops in the northwestern zone of the USSR (spinach, lettuce, dill) [dissertation]. Leningrad; 1965. https://search.rsl.ru/ru/record/01000786532

30. Shi A., Qin J., Mou B., Correll J., Weng Y., Brenner D., … Ravelombola W. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing. PLOS ONE. 2017;12(11):e0188745. https://doi.org/10.1371/journal.pone.0188745

31. Khattak J.Z.K., Torp A.M., Andersen S.B. A genetic linkage map of Spinacia oleracea and localization of a sex determination locus. Euphytica. 2006;148:311–318. https://doi.org/10.1007/s10681-005-9031-1

32. Sneep J. The present position of spinach breeding. Euphytica, 1958а;7(1):1–8. https://doi.org/10.1007/bf00037858

33. Komai F., Masuda K. Plasticity in sex expression of spinach (Spinacia oleracea) regenerated from root tissues. Plant Cell Tissue and Organ Culture. 2004;78:285–287. https://doi.org/10.1023/B:TICU.0000025665.74491.1e

34. Pandey S.C., Kalloo G. Spinach. Genetic Improvement of Vegetable Crops. 1993;325–336. https://doi.org/10.1016/b978-0-08-040826-2.50027-8

35. Mikhov A.S., Alipieva M. Practical vegetable growing. Moscow. Kolos. 1980. (In Russ.)

36. Ribera A., Bai Y., Wolters A.-M. A., van Treuren R., Kik C. A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica. 2020;216(3). https://doi.org/10.1007/s10681-020-02585-y

37. Vilmorin-Andrieux. Description des Plantes Potage`res. Vilmorin Andrieux & Cie. 1855. Paris, pp. 127-130. https://gallica.bnf.fr/ark:/12148/bpt6k10250876/f5.item

38. Vilmorin-Andrieux. Les Plantes Potage`res. Vilmorin Andrieux & Cie. 1883. Paris, pp. 202–206. https://gallica.bnf.fr/ark:/12148/bpt6k9641303z/f9.image.texteImage

39. Gibault G. Histoire des légumes. Paris: Libraire Horticole. 1912. pp 81-88. https://gallica.bnf.fr/ark:/12148/bpt6k6422705t/f5.item

40. Smith L.B. Breeding mosaic resistant spinach and notes on malnutrition. Bulletin. Virginia Truck Experiment Station. 1920;31:137–160

41. Cook H.T., Nugent T.J., Paris G.K., Porter R.P. Fusarium wilt of spinach and the development of wilt resistant variety. Va. Truck Exp. Sta. 1947;110:1810–1820.

42. Sherbakoff C.D. Breeding for resistance to Fusarium and Verticillium wilts. The Botanical Review. 1949;15(6):377–422. https://doi.org/10.1007/bf02861698

43. Sneep J. The breeding of hybrid varieties and the production of hybrid seed in spinach. Euphytica. 1958;7(2):119–122. https://doi.org/10.1007/bf00035724

44. Jones R.K. Occurrence of race 3 of Peronospora effusa on spinach in Texas and identification of sources of resistance. Plant Disease. 1982;66(1):1078. https://doi.org/10.1094/PD-66-1078

45. Thompson A.E. The extent of natural crossing in inbred monoecious spinach lines. Proceedings. American Society for Horticultural Science. 1954;64:405-09.

46. Thompson A.E. The extent of hybrid vigor in spinach. Proceedings. American Society for Horticultural Science. 1956;67:440-4.

47. Smith P.G., Zahara M.B. New spinach immune to mildew: hybrid variety developed by plant breeding program intended for use where Viroflay is adapted, produces comparable yield. Hilgardia. 1956;10(7):15–15.

48. Zink F.W., Smith P.G. A second physiological race of spinach downy mildew. Plant Disease. 1958;42:818.

49. Smith P.G., Webb R.E., Millett A.M., Luhn C.H. Downy mildew on spinach: a second race of fungus has been found on Califlay variety in the coastal valley area of California. California Agriculture 1961;15(10):5–5. https://californiaagriculture.org/article/113287 (date of access: 14.01.2025)

50. Eenink A.H. Linkage in Spinacia oleracea L. of two racespecific genes for resistance to downy mildew Peronospora farinosa f. sp. Spinaciae Byford. Euphytica 1976;25:713–715. doi.org/10.1007/bf00041610

51. Jones R.K., Dainello F.J. Occurrence of race 3 of Peronospora effusa on spinach in Texas and identification of sources of resistance. Plant Disease. 1982;66:1078–1079. https://doi.org/10.1094/PD-66-1078

52. Correll J.C., Morelock T.E., Black M.C., Koike S.T., Brandenberger L.P., Dainello F.J. Economically important diseases of spinach. Plant Disease. 1994;78:653–660.

53. Feng C., Saito K., Liu B., Manley A., Kammeijer K., Mauzey S. J., … Correll J. C. New Races and Novel Strains of the Spinach Downy Mildew Pathogen Peronospora effusa. Plant Disease. 2018;102(3):613–618. https://doi.org/10.1094/pdis-05-17-0781-re

54. The International Spinach Database (ISDB), Available online: https://ecpgr.cgn.wur.nl/lvintro/spinach/con_spec.htm (date of access: 14.01.2025)

55. Van Treuren R., Coquin P., Lohwasser U. Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): composition and gaps. Genetic Resources and Crop Evolution. 2012;59(6):981–997. https://doi.org/10.1007/s10722-011-9738-x

56. Van Treuren R., de Groot L., Hisoriev H., Khassanov F., Farzaliyev V., Melyan G., Gabrielyan I., van Soest L., Tulmans C., Courand D., de Visser J., Kimura R., Boshoven J.C., Janda T., Goossens R., Verhoef M., Dijkstra J., Kik C.Acquisition and regeneration of Spinacia turkestanica and S. tetrandra Steven ex M. Bieb. to improve a spinach gene bank collection. Genetic Resources and Crop Evolution. 2019. https://doi.org/10.1007/s10722-019-00792-8

57. Qian W., Feng C.D., Zhang H.L., Liu W., Xu D.H., Correll J.C., Xu Z.S. First report of race diversity of the spinach downy mildew pathogen, Peronospora effusa, in China. Plant Disease. 2016;100:1248. https://doi.org/10.1094/PDIS-08-15-0847-PDN

58. Sattler M.C., Carvalho C.R., Clarindo W.R. The polyploidy and its key role in plant breeding. Planta. 2015;243(2):281–296. https://doi.org/10.1007/s00425-015-2450-x

59. Ito M., Ohmido N., Akiyama Y., Fukui K., Koba T. Characterization of spinach chromosomes by condensation patterns and physical mapping of 5S and 45S rDNAs by FISH. Journal of the American Society for Horticultural Science. 2000;125(1):59-62. https://doi.org/10.21273/JASHS.125.1.59

60. Bragdo M. Breeding of polyploid spinach. Euphytica. 1962;11:143–148 https://doi.org/10.1007/BF00033786

61. Roughani A., Miri S.M., Kashi A.K., Khiabani B.N. Increasing the ploidy level in spinach (Spinacia oleracea L.) using mitotic inhibitors. Plant cell biotechnology and molecular biology. 2017;18(3-4):124-130.

62. Murphy J.B., Morelock T.E. Spinach breeding program yields lines containing high levels of carotenoid antioxidants. In: Richardson M.D., Clark J.R. (eds) Horticultural studies, research series. 2000; 475. University of Arkansas, Fayetteville, pp 36–39.

63. Howard L.R., Pandjaitan N., Morelock T., Gil M.I. Antioxidant Capacity and Phenolic Content of Spinach As Affected by Genetics and Growing Season. Journal of Agricultural and Food Chemistry. 2002;50(21):5891–5896. https://doi.org/10.1021/jf020507o

64. EURISCO. European Search Catalogue for Plant Genetic Resources. https://eurisco.ipkgatersleben.de/apex/eurisco_ws/r/eurisco/cropsearchresult1?p17_crop=spinach&p17_ce=N (дата обращения 15.01.2025)

65. Sokolova D.V., Zaretsky A.M. Study of genetic resources of representatives of the amaranth family (Amaranthaceae Juss.) at the Polar Experimental Station of VIR. Abstracts of reports. Series "Northern agriculture. Issue 1". VIR. 2023. https://doi.org/10.30901/978-5-907145-97-9 https://www.vir.nw.ru/wp-content/uploads/2023/09/Severnoezemledelie_Ovoshhnye-kultury_nauchnyj-seminar-v-ramkah100-letiya-severnogo-zemledeliya-posvyashhennyj-90-letiyu-sodnya-rozhdeniya-L.-V.-Sazonovoj_2023.pdf (date of access: 14.01.2025) (In Russ.)

66. Kiselev E.G., Sokolova D.V. Study of the VIR spinach collection for early maturity and sex divergence in ontogenesis at different sowing dates in the conditions of the North-West region of the Russian Federation. Abstracts of the Conference "VIR - 130: Plant Genetic Resources".2024. (In Russ.).


Рецензия

Для цитирования:


Киселев Е.Г., Соколова Д.В. Потенциал коллекции шпината ВИР для использования в селекции. Овощи России. 2025;(2):36-44. https://doi.org/10.18619/2072-9146-2025-2-36-44

For citation:


Kiselev E.G., Sokolova D.V. Potential of the VIR Spinach collection for use in breeding. Vegetable crops of Russia. 2025;(2):36-44. (In Russ.) https://doi.org/10.18619/2072-9146-2025-2-36-44

Просмотров: 177


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)