Interspecific hybrids Allium as a genetic source of increasing the bioresource collection
https://doi.org/10.18619/2072-9146-2025-2-30-35
Abstract
Purpose. To obtain and evaluate breeding forms of interspecific allium hybrids based on econom- ically useful characteristics and resistance to downy mildew to replenish the bioresource collection of the genus Allium L.
Material and Methods. The studies were carried out on plants of progeny I1-5 from BC1 interspecif- ic allium hybrids of crossing combinations F5 (A. cepa × A. vavilovii) and F5 (A. cepa × A. fistulosum). Morphological assessment was carried out according to the signs of the bulb. Plants in the field were grown using the technology of onion cultivation for this soil and climatic zone. The phytopathological assessment included identifying the nature of onion plants resistance to downy mildew.
Results. In a combination of crossing species of A. cepa × A. fistulosum and A. cepa × A. vavilovii, the plants formed bulbs weighing 54.4-100.0 g. The maximum bulb weight is more than 85.0 g in plants, I5BC1(F5(A. cepa × A. vavilovii)). Onion plants mainly showed splitting into yellow and red bulbs. Among the crossing combinations species of A. cepa × A. fistulosum and A. cepa × A. vavilovii, the red coloration of the bulb ranged from 44.0 to 97.0%. In the combination species of A. cepa × A. fistulosum, the broadly elliptical bulb shape prevailed (15-85%). In a combination species crossing of A. cepa × A. vavlovii, plants I3BC1(F5(A. cepa × A. vavilovii)) 95.0% formed elliptical bulbs, and 5.0% formed round bulbs. In plants of the crossing combination species A. cepa × A. fistulosum, the number of plants resistant to downy mildew varied in inbred generations from 42.0 to 49.0%. In combination with the crossing species of A. cepa × A. vavilovii, with an increase in the inbred generation from I1 to I5, the number of plants resistant to downy mildew increased from 50.0 to 74.0%. In the control, 90.0% of unstable plants were noted, as well as their death.
Conclusion. The analysis of plants of interspecific allium hybrids from inbred progeny of I1-5 combinations of crosses species of A. cepa × A. vavilovii and A. cepa × A. fistulosum showed the pos- sibility of increasing onion biological resources due to interspecific hybridization, saturating crosses and inbreeding of breeding forms. A morphological assessment of the qualitative and quantitative characteristics of the onion plants obtained made it possible to identify promising breeding forms from the progeny of I3BC1(F5(A. cepa × A. fistulosum)) the weight of the bulb is about 100.0 g of elliptical and broadly elliptical shape. Based on a phytopathological assessment, recombinant Allium forms as a genetic source were isolated in the progeny of I5BC1(F5(A. cepa × A. vavilovii)) with 74.0% of plants resistant to downy mildew.
About the Author
V. S. RomanovRussian Federation
Valeriy S. Romanov – Cand. Sci. (Agriculture), Senior Scientist
14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072
References
1. Huo Y., Gao L., Liu B., Yang Y., Kong S., Sun Y., Yang Y., Wu X. Complete chloroplast genome sequences of four Allium species: Comparative and phylogenetic analyses. Sci. Rep. 2019;9:12250. https://doi.org/10.1038/s41598-019-48708-x
2. Kiani Z., Mashayekhi K., Golubkina N., Mousavizadeh S.J., Nezhad K.Z., Caruso G. Agronomic, physiological, genetic and phytochemical characteristics of onion varieties influenced by daylength requirements. Agriculture. 2023;13:697. https://doi.org/10.3390/agriculture13030697
3. Havey M.J. Onion breeding. Plant Breed. Rev. 2018;42:39-85. https://doi.org/10.1002/9781119521358.ch2
4. Benke A.P., Mahajan V., Manjunathagowda D.C., Mokat D.N. Interspecific hybridization in Allium crops: Status and prospectus. Genet. Resour. Crop Evol. 2022;69:1-9. https://doi.org/10.1007/s10722-021-01283-5
5. Cramer C.S., Mandal S., Sharma S., Nourbakhsh S.S., Goldman I., Guzman I. Recent advances in onion genetic improvement. Agronomy. 2021;11:482. https://doi.org/10.3390/agronomy11030482
6. Priyanka V., Kumar R., Dhaliwal I., Kaushik P. Germplasm conservation: Instrumental in agricultural biodiversity - A review. Sustainability. 2021;13:6743. https://doi.org/10.3390/su13126743
7. Khosa J.S., McCallum J., Dhatt A.S., Macknight R.C. Enhancing onion breeding using molecular tools. Plant Breed. 2015;135:9-20. https://doi.org/10.1111/pbr.12330
8. Manjunathagowda D.C., Muthukumar P., Gopal J., Prakash M., Bommesh J.C., Nagesh G.C., Megharaj K.C., Manjesh G.N., Anjanappa M. Male sterility in onion (Allium cepa L.): Origin: Origin, evolutionary status, and their prospectus. Genet. Resour. Crop Evol. 2021;68:421-439. https://doi.org/10.1007/s10722-020-01077-1
9. Scholten O.E., van Heusden A.W., Khrustaleva L.I., BurgerMeijer K., Mank R.A., Antonise R.G.C., Harrewijn J.L., Van Haecke W., Oost,E.H., Peters R.J., et al. The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica. 2007;256:345-353. https://doi.org/10.1007/s10681-007-9383-9
10. Chuda A. Hybridization and molecular characterization of F1 Allium cepa х Allium roylei plants. Acta Biol. Crac. Ser. Bot. 2012;54:25-31. https://doi.org/10.2478/v10182-012-0016-9
11. Wohleb C.H., Waters T.D. Yield, quality, and storage characteristics of onion cultivars in the Columbia basin of Washington in 2012-14. HortTechnology. 2016;26:230-243. https://doi.org/10.21273/HORTTECH.26.2.230
12. Pivovarov V.F., Ershov I.I., Agafonov A.F. Onion crops. M. VNIISSOK. 2001. 500 p. (In Russ.) https://elibrary.ru/wqdcmj
13. Manjunathagowda D.C. Genetic enhancement of onion germplasm through population improvement. Plant Physiol. Rep. 2022;27:73-80. https://doi.org/10.1007/s40502-022-00646-z
14. Rivera A., Mallor C., Garcés-Claver A., García-Ulloa A., Pomar, F., Silvar C. Assessing the genetic diversity in onion (Allium cepa L.) landraces from northwest Spain and comparison with the European variability. N.Z.J. Crop Hortic. Sci. 2016;44:103- 120. https://doi.org/10.1080/01140671.2016.1150308
15. Villano C., Esposito S., Carucci F., Iorizzo M., Frusciante L., Carputo D., Aversano R. High-throughput genotyping in onion reveals structure of genetic diversity and informative SNPs useful for molecular breeding. Mol. Breed. 2019;39:5. https://doi.org/10.1007/s11032-018-0912-0
16. Scholten O.E., van Kaauwen M.P., Shahin A., Hendrickx P.M., Keizer L., Burger K., van Heusden A.W., van der Linden C.G., Vosman B. SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biol. 2016;16:187. https://doi.org/10.1186/s12870-016-0879-0
17. Romanov V.S., Romanova O.V., Tareeva M.M. The bulbous forms of interspecific hybrids of allium, their creation and evaluation. Vegetable crops of Russia. 2019;(1):42-45. (In Russ.) https://doi.org/10.18619/2072-9146-2019-1-42-45 https://elibrary.ru/fmnubc
18. Khrustaleva L.I., Kik C. Introgression of Allium fistulosum into A. cepa mediated by A. roylei. Theor. Appl. Genet. 2000;100:17- 26. https://doi.org/10.1007/s001220050003
19. Titova I.V., Timin N.I., Yuryeva N.A. Interspecific hybridization of onions to obtain forms resistant to downy mildew. Reports of VASKhNIL. 1983;(8):190. (In Russ.)
20. Methodology for testing the distinctiveness, homogeneity and stability of onions (Allium cepa L.) and shallots (Allium ascalonicum L.). RTG/46/2, UPOV, 2000. Pp. 528-547. (In Russ.)
21. Methodical instructions for the selection of onion crops. Moscow, VNIISSOK, 1997. 125 p. (In Russ.)
22. Dospekhov B.A. Methodology of field experiment. Moscow: Agropromizdat, 1985. 351 p. (In Russ.).
Review
For citations:
Romanov V.S. Interspecific hybrids Allium as a genetic source of increasing the bioresource collection. Vegetable crops of Russia. 2025;(2):30-35. (In Russ.) https://doi.org/10.18619/2072-9146-2025-2-30-35