Preview

Vegetable crops of Russia

Advanced search

Aqueous extract of Astilbe chinensis leaves as a potential medicine to slow activity of digestive enzymes

https://doi.org/10.18619/2072-9146-2025-1-88-91

Abstract

Relevance. Astilbe chinensis has clinical efficacy against many diseases, making this plant a potential natural source for treating diabetes and obesity with a mild, non-aggressive effect. Overall, the study of the biological properties of A. chinensis leaves is currently in its infancy.

Aim. In this study, the anti-amylase and anti-lipase potential of aqueous extract of Astilbe chinensis leaves was investigated as an important source of natural complex substances with therapeutic potential.

 Methods. The total content of phenolic compounds was determined by the Folin-Ciocalteu method and flavonoids by the colorimetric method according to the complexation reaction with aluminum chloride. The effects of aqueous/tea extracts of A. chinensis leaves on pancreatic amylase and lipase were studied via in vitro models in comparison with acarbose and orlistat, respectively. For these tests, the artificial substrates 1,2-O-dilauryl-rac-glycero-3-glutaric acid ester (6-methylresorufin) and 2-chloro-4-nitrophenol oligosaccharide were used.

Results. The study of the effect of aqueous extract of A. chinensis leaves on pancreatic amylase and lipase showed a comparable inhibitory effect of 18% on both enzymes.

About the Authors

E. V. Sokolova
All-Russian scientific research Institute of medicinal and aromatic plants
Russian Federation

Ekaterina V. Sokolova – Cand. Sci. (Biology), Leading Researcher

7, Grin street, Moscow, 117216



T. N. Krol
All-Russian scientific research Institute of medicinal and aromatic plants
Russian Federation

Tatiana A. Krol – Cand. Sci. (Agriculture), Leading Researcher

7, Grin street, Moscow, 117216



D. N. Baleev
All-Russian scientific research Institute of medicinal and aromatic plants
Russian Federation

Dmitry N. Baleev – Cand. Sci. (Agriculture)

7, Grin street, Moscow, 117216



References

1. Sivajothi V., Dey .A, Jayakara B., Rajkapoor B. Antihyperglycemic, antihyperlipidemic and antioxidant effect of Phyllanthus rheedii on streptozotocin induced diabetic rats. Iranian Journal of Pharmaceutical Research. 2008;7(1):53-59.

2. Kumar S., Mittal A., Babu D., Mittal A. Herbal medicines for diabetes management and its secondary complications. Current diabetes reviews. 2021;17(4):437-56. https://doi.org/10.2174/1573399816666201103143225

3. Singh J.K., Chakraborty S., Nagpal M., Aggarwal G. Herbal Approach for Diabetic Cure and Futuristic Dimension. Current Drug Research Reviews Formerly: Current Drug Abuse Reviews. 2023;15(3):207-21. https://doi.org/10.2174/2589977515666230217114449

4. Seo C., Jeong W. Lee J.E., Kwon J.G., Kim J.K., Hong S.S. Flavonoids from the aerial parts of Astilbe rubra. Chemistry of Natural Compounds. 2019;55(6):1153-5. https://doi.org/10.1007/s10600-019-02919-w

5. Gil T.Y., Jin B.R., Hong C.H., Park J.H., An H.J. Astilbe Chinensis ethanol extract suppresses inflammation in macrophages via NF-κB pathway. BMC Complementary Medicine and Therapies. 2020;20:1-1. https://doi.org/10.1186/s12906-020-03073-5

6. Zhang Y., Wang J., Guo H. Ultrasound-assisted extraction of bergenin from Astilbe chinensis. Genetic resources and crop evolution. 2014;61:893-9. https://doi.org/10.1007/s10722-014-0117-2

7. Zhang X.H., Wang Z., Kang B.G., Hwang S.H., Lee J.Y., Lim S.S., Huang B. Antiobesity effect of Astilbe chinensis Franch. et savet. Extract through regulation of adipogenesis and AMP-activated protein kinase pathways in 3T3-L1 adipocyte and high-fat diet-induced C57BL/6N obese mice. Evidence - Based Complementary and Alternative Medicine. 2018;2018(1):1347612. https://doi.org/10.1155/2018/1347612

8. Xue Y., Xu X.M., Yan J.F., Deng W.L., Liao X. Chemical constituents from Astilbe chinensis. Journal of Asian natural products research. 2011;13(02):188-91. https://doi.org/10.1080/10286020.2010.546355

9. Nho J.H., Jang J.H., Jung H.K., Lee M.J., Sim M.O., Jeong D.E., Cho H.W. Ethanol extracts from Astilbe chinensis (Maxim.) Franch. Et Savat. exhibit inhibitory activities on oxidative stress generation and viability of human colorectal cancer cells. Korean Journal of Medicinal Crop Science. 2018;26(2):141-7. https://doi.org/10.7783/KJMCS.2018.26.2.141

10. Jeon B.R., Irfan M., Lee S.E., Lee J.H., Rhee M.H. Astilbe chinensis modulates platelet function via impaired MAPK and PLCγ2 expression. Evidence - Based Complementary and Alternative Medicine. 2018;2018(1):3835021. https://doi.org/10.1155/2018/3835021

11. Chen C., Yang M., Chen Y., Wang Y., Wang K., Li T., Hu Q., Zhang W., Xia J. Astilbin-induced inhibition of the PI3K/AKT signaling pathway decelerates the progression of osteoarthritis. Experimental and Therapeutic Medicine. 2020;20(4):3078-83. https://doi.org/10.3892/etm.2020.9048

12. Sancheti S., Sancheti S., Lee S.H., Lee J.E., Seo S.Y. Screening of Korean medicinal plant extracts for α-glucosidase inhibitory activities. Iranian journal of pharmaceutical research: IJPR. 2011;10(2):261. PMID: 24250352

13. Lim J.S., Kyung S.Y., Jeon Y., Kim I.S., Kwak J.H., Kim H.S. Anticancer effects of the HDAC inhibitor, 3β, 6β dihydroxyurs 12 en 27 oic acid, in MCF 7 breast cancer cells via the inhibition of Akt/mTOR pathways. Oncology Reports. 2023;49(2):1-2. https://doi.org/10.3892/or.2023.8480

14. Han J.M., Yun I., Yang K.M., Kim H.S., Kim Y.Y., Jeong W., Hong S.S., Hwang I. Ethanol extract from Astilbe chinensis inflorescence suppresses inflammation in macrophages and growth of oral pathogenic bacteria. Plos one. 2024;19(7):e0306543. https://doi.org/10.1371/journal.pone.0306543

15. Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. American journal of Enology and Viticulture. 1965;16(3):144-58. https://doi.org/10.5344/ajev.1965.16.3.144

16. Ojha S., Raj A., Roy A., Roy S. Extraction of total phenolics, flavonoids and tannins from Paederia foetida L. Leaves and their relation with antioxidant activity. Pharmacognosy Journal. 2018;10(3). https://doi.org/10.5530/pj.2018.3.88

17. Chang C.C., Yang M.H., Wen H.M., Chern J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis. 2002;10(3).

18. Mammen D., Daniel M. A critical evaluation on the reliability of two aluminum chloride chelation methods for quantification of flavonoids. Food chemistry. 2012;135(3):1365-8. https://doi.org/10.1016/j.foodchem.2012.05.109

19. Morishita Y., Iinuma Y., Nakashima N., Majima K., Mizuguchi K., Kawamura Y. Total and pancreatic amylase measured with 2-chloro-4-nitrophenyl-4-O-β-D-galactopyranosylmaltoside. Clinical chemistry. 2000;46(7):928-33. https://doi.org/10.1093/clinchem/46.7.928

20. Panteghini M., Bonora R., Pagani F. Measurement of pancreatic lipase activity in serum by a kinetic colorimetric assay using a new chromogenic substrate. Annals of clinical biochemistry. 2001;38(4):365-70. https://doi.org/10.1258/0004563011900876

21. Zhang Y., Xie J. Targeting ferroptosis regulators by natural products in colorectal cancer. Frontiers in Pharmacology. 2024;15:1374722. https://doi.org/10.3389/fphar.2024.1374722

22. Kumar D.A., Anusha S.V., Oruganti S., Deshpande M., Zehra A., Tiwari A.K. Raw versus cooked vegetable juice: Effect on parameters of glycaemic overload and oxidative stress in vitro. Nutrafoods. 2015;14:27-38. https://doi.org/10.1007/s13749-014-0066-6

23. Tiwari A.K., Jyothi A.L., Tejeswini V.B., Madhusudana K., Kumar D.A., Zehra A., Agawane S.B. Mitigation of starch and glucose-induced postprandial glycemic excursion in rats by antioxidant-rich green-leafy vegetables’ juice. Pharmacognosy Magazine. 2013;9(Suppl1):S66. https://doi.org/10.4103/0973-1296.117872

24. Aghajanyan A., Nikoyan A., Trchounian A. Biochemical activity and hypoglycemic effects of Rumex obtusifolius L. seeds used in Armenian traditional medicine. BioMed Research International. 2018;2018(1):4526352. https://doi.org/10.1155/2018/4526352

25. Podsedek A., Majewska I., Kucharska A.Z. Inhibitory potential of red cabbage against digestive enzymes linked to obesity and type 2 diabetes. Journal of Agricultural and Food Chemistry. 2017;65(33):7192-9. https://doi.org/10.1021/acs.jafc.7b02499

26. Savran A., Zengin G., Aktumsek A., Mocan A., Glamoćlija J., Ćirić A., Soković M. Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: potential sources of natural agents with health benefits. Food & function. 2016;7(7):3252-62. https://doi.org/10.1039/C6FO00695G

27. Spínola V., Llorent-Martínez E.J., Castilho P.C. Inhibition of α-amylase, α-glucosidase and pancreatic lipase by phenolic compounds of Rumex maderensis (Madeira sorrel). Influence of simulated gastrointestinal digestion on hyperglycaemia-related damage linked with aldose reductase activity and protein glycation. Lwt. 2020;118:108727. https://doi.org/10.1016/j.lwt.2019.108727

28. Kim H.Y., Lim S.H., Park Y.H., Ham H.J., Lee K.J., Park D.S., Kim K.H., Kim S.M. Screening of α-amylase, α-glucosidase and lipase inhibitory activity with Gangwon-do wild plants extracts. Journal of the Korean Society of Food Science and Nutrition. 2011;40(2):308-15. https://doi.org/10.3746/jkfn.2011.40.2.308

29. Kumar A., Chauhan S.. Pancreatic lipase inhibitors: The road voyaged and successes. Life Sciences. 2021;271:119115. https://doi.org/10.1016/j.lfs.2021.119115


Review

For citations:


Sokolova E.V., Krol T.N., Baleev D.N. Aqueous extract of Astilbe chinensis leaves as a potential medicine to slow activity of digestive enzymes. Vegetable crops of Russia. 2025;(1):88-91. (In Russ.) https://doi.org/10.18619/2072-9146-2025-1-88-91

Views: 197


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)