Preview

Vegetable crops of Russia

Advanced search

Testing of the new technology «TOR» on vegetable legum crops varieties by the FSBSI FSVC breeding the Arctic Circle

https://doi.org/10.18619/2072-9146-2025-1-70-81

Abstract

Relevance. In the harsh climate of the Arctic, where the warm season with a maximum average daily temperature above 10 °C lasts only three months, scientists in the crop industry are conducting tests and creating unique varieties of crops that will be able to provide the northern regions with fresh and vitamin-rich vegetable products.

Materials and Methods. In the Nenets Autonomous Okrug, at the Naryan-Mar Experimental Agricultural Station, an innovative technology for priming seeds of vegetable legumes with electromagnetic exposure developed by JSC «Concern GRANIT» with the «TOR» device was tested on domestic varieties of Pisum sativum L. и Vicia Faba L. selected by the Federal Scientific Vegetable Center (FSBSI FSVС).

Results. The tested varieties of vegetable legumes beyond the Arctic Circle were able to fully realize their productive potential, and the results of observations of the growth and development of crops confirmed the presence of favorable conditions for the selected crops. The quality of vegetable products and the obtained seeds of vegetable legumes in the Arctic in 2024 turned out to be higher than in the Moscow region due to a lower phytopathogenic load. Electromagnetic priming with the «TOR» device made it possible to obtain, in the conditions of the Far North, the productivity of green peas in responsive varieties and seed productivity in beans – by 3-16% and 12-35%, respectively, more than in control. Thanks to the use of the «TOR» device, acceleration of ripening, an increase in yield and product quality are noted, which is especially important in the conditions of a short growing season. Thus, favorable conditions and competitive opportunities for agriculture in the geographical location of the Russian North provide good opportunities to produce organic products in ecologically clean areas, which will be competitive not only in the regional, but also in the national and international food markets.

About the Authors

I. M. Kaigorodova
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Irina M. Kaigorodova – Cand. Sci. (Agriculture), Senior Researcher

14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072



E. G. Kozar
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Elena G. Kozar – Cand. Sci. (Agriculture), Leading Researcher of the Laboratory of Molecular Immunological Research

14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072



V. A. Ushakov
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Vladimir A. Ushakov – Cand. Sci. (Agriculture), Senior Researcher

14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072



T. M. Romanenko
Naryan-Mar branch Federal Research Center for Comprehensive Study of the Arctic named after Academician N.P. Laverov Ural Branch of the Russian Academy of Sciences – Naryan-Mar Agricultural Experimental Station
Russian Federation

Tatyana M. Romanenko – Cand. Sci. (Biology), Deputy Director of the Center for Research Managementin the NAO – Branch Director

1A, Rybnikov street, Naryan-Mar, NAO, 166004



A. B. Filippova
A.V. Zhuravsky Institute of Agro-Biotechnologies of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Russian Federation

 

Anastasiya B. Filippova – technician of the A.V. Zhuravsky Institute of Agro-Biotechnologies of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

27, Rucheinaya street, Syktyvkar, Komi Republic, 167023



M. S. Anisimov
JSC «Concern GRANIT»
Russian Federation

Mikhail S. Anisimov – Master of Technical Physics, Research Specialist at JSC Concern GRANIT

31, bldg. 2, Gogolevsky blvd., Moscow, 119019



E. A. Galkina
JSC «Concern GRANIT»
Russian Federation

Ekaterina A. Galkina – Head of the Laboratory of Electrobiophysical and Chemical Research of JSC Concern GRANIT

31, bldg. 2, Gogolevsky blvd., Moscow, 119019



I. V. Kuzmina
JSC «Concern GRANIT»
Russian Federation

Irina V. Kuzmina – Cand. Sci. (Biology), Senior Scientific Associate, Laboratory of Circulatory Pharmacology

31, bldg. 2, Gogolevsky blvd., Moscow, 119019



References

1. A brief historical description of the parishes and churches of the Archangel Diocese. Arkhangelsk. 1895;(2(;306-307. (In Russ.)

2. Dyuzhilov S.A. Polar agriculture: recognizing of the problem and its solution in the Kola North in the 1920S. Transactions of the Kola Science Centre of RAS. 2016;3(37):71-78. (In Russ.) https://www.elibrary.ru/xcsotn

3. Zhuravsky A.V. Selected works on the agricultural development of the Pechora North. Syktyvkar. 2007. 107 p. ISBN 978-5-89606-342-1. (In Russ.) https://www.elibrary.ru/qkzqvv

4. Pryanishnikov D.N. Raising agriculture in the North as a means to alleviate the crisis of food and transport. Ed. 2nd M., «Agriculture». 1922. 24 p. (In Russ.)

5. Vavilov N.I. The problem of northern agriculture. Materials of the Leningrad Extraordinary session of the Academy of Sciences of the USSR. 25-30 XI 1931 Leningrad, publishing house of the Academy of Sciences. (In Russ.) http://www.book-ist.ru/vavilov/vavilov.html.

6. Sazonova L.V. Activities of the N.I. Vavilov Institute of Plant Breeding for the extension of agriculture to the Far North of Russia. Abstracts of the reports. Northern agriculture. Vegetable crops. A scientific seminar within the framework of the 100th anniversary of northern agriculture, dedicated to the 90th anniversary of the birth of L.V. Sazonova. 2023;(1):41-44. (In Russ.)

7. Romanenko T.M., Filippova G.I. The flagship of agricultural science in the Nenets District. Global problems of the Arctic and Antarctic: A collection of scientific materials of the All-Russian Conference with international participation dedicated to the 90th anniversary of the birth of the Academy of Sciences. Nikolay Pavlovich Laverov, Arkhangelsk, 2020. P. 1117-1122. (In Russ.) https://www.elibrary.ru/mzzrvs

8. Kruglikov V.M. Variety testing vegetable crops and potatoes. Scientific report of the Naryan-Mar zonal station for 1940. Naryan-Mar. 1940. P. 27-31. (In Russ.)

9. Is an agricultural director for the cultivation of potatoes, vegetables and forage crops in the Nenets National District. Naryan-Mar. 1968. 77 p. (In Russ.)

10. Romanenko T., Vylko Yu., Laishev K., Glebov E., Myasnikova M. Ecological and phenological characteristics of summer hypodermic gadfly reindeer on the territory of Nenets Autonomous Okrug. Hippology and veterinary medicine. 2019;3(33):130-137. (In Russ.) https://www.elibrary.ru/qzuzkt

11. https://finobzor.ru/131374-v-arktike-sozdajut-bank-zdorovyh-sortov-kartofelja-rossijskoj-selekcii.html. Date of access: 22.10.2024.

12. https://vniissok.ru/2024/06/28/ispytanie-novyh-tehnologij-i-sortov-ovoshhnyh-kultur-selekcii-fgbnu-fnco-za-severnym-polyarnym-krugom. Date of access: 23.11.2024.

13. Kataria S., Jain M. Magnetopriming alleviates adverse effects of abiotic stresses in plants. In Plant Tolerance to Environmental Stress. CRC Press. 2019. P. 427-442. https://doi.org/10.1201/9780203705315-26

14. Waqas M., Korres N.E., Khan M.D., Nizami A.S., Deeba F., Ali I., Hussain H. Advances in the concept and methods of seed priming. Priming and pretreatment of seeds and seedlings: Implication in plant stress tolerance and enhancing productivity in crop plants. 2019. P. 11-41. https://doi.org/10.1007/978-981-13-8625-1_2

15. Argerich C.A., Bradford K.J., Tarquıs A.M. The effects of priming and ageing on resistance to deterioration of tomato seeds. Journal of Experimental Botany. 1989;40(5):593-598. https://doi.org/10.1093/jxb/40.5.593

16. Fabrissin I., Sano N., Seo M., North H.M. Ageing beautifully: can the benefits of seed priming be separated from a reduced lifespan trade-off?. Journal of Experimental Botany. 2021;72(7):2312-2333. https://doi.org/10.1093/jxb/erab004

17. Kutis T.L., Kutis S.D. Electromagnetic technologies in crop production. Part 1. Electromagnetic treatment of seeds and planting material. 2017. 52 p. (In Russ.)

18. Shine M.B., Guruprasad K.N., Anand A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics. 2011:32(6):474-484. https://doi.org/10.1002/bem.20656

19. Bhardwaj J., Anand A., Nagarajan S. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry. 2012;(57):67-73. https://doi.org/10.1016/j.plaphy.2012.05.008

20. Xia X., Padula G., Kubisz L., HoŁubowicz R. Effect of low frequency magnetic field (LFMF) on seed quality of radish (Raphanus sativus L.) seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2020;48(3),1458-1464. https://doi.org/10.15835/nbha48311918

21. Sari M.E., Demir I., Yildirim K.C., Memis N. Magnetopriming enhances germination and seedling growth parameters of onion and lettuce seeds. International Journal of Agriculture, Environment and Food Sciences. 2023;7(3):468-475. https://doi.org/10.31015/jaefs.2023.3.1

22. Martinez E., Carbonell M.V., Amaya J.M. A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro- and Magnetobiology. 2000:19(3):271-277. https://doi.org/10.1081/JBC-100102118

23. Martınez E., Carbonell M.V., Florez M., Amaya J.M., Maqueda R. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. Int Agrophys. 2009;(23):45-49.

24. Dhawi F. Why are magnetic fields used to enhance a plant’s growth and productivity? Annual Research & Review in Biology. 2014. P. 886-896. https://doi.org/10.9734/ARRB/2014/5983

25. Baghel L., Kataria S., Guruprasad K.N. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics. 2016;37(7):455-470. https://doi.org/10.1002/bem.21988

26. Kadıoğlu N., Ermis S., Oktem G., Demir I. Magnetopriming enhanced seed germination in six vegetable species: tomato, pepper, onion, cauli-flower, cabbage and carrot. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi. 2023;28(3):557-567. https://doi.org/10.37908/mkutbd.1284048.

27. Rodenko N.A., Blednykh O.V., Glushchenkov V.A., Degteva Y.V. Change in the growth parameters of soft wheat Triticum aestivum (L.) after pretreatment of seeds with a pulsed magnetic field. BIO Web of Conferences. 2024;139:01002. https://doi.org/10.1051/bioconf/202413901002

28. Hołubowicz R., Kubisz L., Gauza M., Yilin T., Hojan-Jezierska D. Effect of low frequency magnetic field (LFMF) on the germination of seeds and selected useful characters of onion (Allium cepa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2014;42(1):168-172. https://doi.org/10.15835/nbha4219131

29. De Micco V., Paradiso R., Aronne G., De Pascale S., Quarto M., Arena C. Leaf anatomy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. The Scientific World Journal. 2014;(10):428141. https://doi.org/10.1155/2014/428141

30. Buchachenko A.L. Magnetically dependent molecular and chemical processes in biochemistry, genetics and medicine. Russian Chemical Reviews. 2014;83(1):1-12. (In Russ.) https://www.elibrary.ru/rrshmx

31. Kutis S.D., Kutis T.L., Gak E.Z. Electromagnetic installation for presowing seed treatment. Mechanization and automation of technological processes in the agro-industrial complex. 1989;(2):35-36. (In Russ.)

32. Zainullin V.G., Pozhirickaya A.N., Turlakova A.M., Partala A.V., Ovchinnikov O.V., Bondarchuk E.V., Turkanov I.F., Galkina E.A., Gryaznov V.G. The effect of pre-planting treatment with weak nonionizing pulse fields on the productivity and quality of potato cultivars. Agricultural science Euro-North-East. 2024;25(5)794-804. (In Russ.) https://doi.org/10.30766/2072-9081.2024.25.5.794-804 https://www.elibrary.ru/diaqdo

33. Russian Federation Patent «Method for suppressing the vital activity of pathogenic microorganisms and viruses using electromagnetic radiation» № 2766002 dated February 7, 2022 [Electronic resource]. URL: https://patents.s3.yandex.net/RU2766002C1_20220207.pdf. Date of access: 22.03.2023.

34. Guidelines for selection and primary seed production of vegetable legumes. М.: VNIISSOK; ed. E.V. Mamaev. 1985. 60 p. (In Russ.)

35. Belik V.F., Rubin V.F., Lukyanenko D.E. The method of field experiment in vegetable growing and melon growing. M.: NIIOH. 1979. 210 p. (In Russ.)

36. Wide unified CMEA classifier and international CMEA classifier of cultivated species of the genus Pisum L. VIR. 1981. 47 р. (In Russ.)

37. Wide unified CMEA classifier and international CMEA classifier of cultivated species of the genus Faba Mill. VIR. 1981. 28 р. (In Russ.)

38. https://atago-russia.com/primenenie/opredelenie-saharistosti-fruktov. Date of access: 20.10.2024.

39. Dospekhov, B.A. Field experiment technique. M.: Agropromizdat. 1985. 351 p. (In Russ.)


Review

For citations:


Kaigorodova I.M., Kozar E.G., Ushakov V.A., Romanenko T.M., Filippova A.B., Anisimov M.S., Galkina E.A., Kuzmina I.V. Testing of the new technology «TOR» on vegetable legum crops varieties by the FSBSI FSVC breeding the Arctic Circle. Vegetable crops of Russia. 2025;(1):70-81. (In Russ.) https://doi.org/10.18619/2072-9146-2025-1-70-81

Views: 374


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)