Preview

Vegetable crops of Russia

Advanced search

Foliar biofortification of chervil with selenium and iodine under silicon containing fertilizer supply

https://doi.org/10.18619/2072-9146-2022-2-57-64

Abstract

Selenium (Se) and iodine (I) are essential elements for humans, and their deficiency is widespread throughout the world. In order to obtain a functional nutritional product with an increased content of these trace elements in the vegetative experiment, foliar biofortification of two chervil varieties with selenium (sodium selenate 10 mg/l) and iodine (potassium iodide 100 mg/l) was carried out without and against the background of the use of silicon-containing fertilizers Siliplant (3 ml/l). The combined and separate application of selenate, iodide and Siliplant increased plants’ biomass. Siliplant utilization increased the accumulation of iodine by 1.7-1.9 times, and selenium supply – by 2.2-3.1 times. A significant increase in ascorbic acid content was provided by the combined supplementation of iodine and selenium (1.25-1.27 times), iodine and silicon (1.46-1.87 times) and joint application of selenium, iodine, and silicon (1.31-1.73 times), while an increase in total antioxidant activity (1.3-1.4 times) was observed for (Se+I) and (Se+I+Si) treatments. High varietal differences in the responsiveness of plants to the selected treatments were manifested, particularly an increase of polyphenols accumulation under separate and joint treatments of chervil with iodine and selenium by 1.26 times in the cultivar 21-20, and the absence of a significant effect in the cultivar 24-20. Taking into account the adequate consumption levels (ACL) of iodine and selenium, 50 g of the resulting functional product can provide up to 79% of iodine ACL and up to 40% in selenium ACL.

About the Authors

A. I. Moldovan
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Anastasia I. Moldovan – Graduate Student, Junior Researcher, laboratory of Selection And Seed Production Of Green, Spice-Flavoring and Flower Crops

14, Selectsionnaya str., VNIISSOK, Odintsovo dis- trict, Moscow region, 143072



V. A. Kharchenko
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Viktor A. Kharchenko – Cand. Sci. (Agriculture), Head of Laboratory of Selection and Seed Production of Green, Spice-Flavoring and Flower Crops

14, Selectsionnaya str., VNIISSOK, Odintsovo dis- trict, Moscow region, 143072



N. A. Golubkina
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Nadezhda A. Golubkina – Doc. Sci. (Agriculture), Leading Researcher of laboratory-analytical department

14, Selectsionnaya str., VNIISSOK, Odintsovo dis- trict, Moscow region, 143072



E. D. Kekina
Department of Hygiene, Medical Postgraduate Academy
Russian Federation

Elena G. Kekina – Cand. Sci. (Biology), Researcher laboratories for the use of agrochemicals in seed production

123995 Moscow



G. Caruso
Department of Agricultural Sciences, University of Naples Federico II
Italy

Gianluca Caruso – Dr. Sci. (Agriculture)

80055 Portici, Naples



References

1. Hirschi K. D. Nutrient biofortification of food crops. Annu. Rev. Nutr. 2009;(29):401-421. https://doi.org/10.1146/annurev-nutr-080508-14114

2. White P. J., Broadley M. R. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182(1):49-84. https://doi.org/10.1111/j.14698137.2008.02738.x

3. Wu Z., Bañuelos G.S., Lin Z.Q., Liu Y., Yuan L., Yin X., et al. Biofortification and phytoremediation of selenium in China.. Front. Plant Sci. 2015;(6);136. https://doi.org/10.3389/fpls.2015.00136.

4. Ahmed M. Iodine deficiency way to go yet. Lancet. 2008;372(9633):88. https://doi.org/10.1016/S0140-6736(08)61009-0.

5. Mistry H.D., Broughton Pipkin F., Redman C.W., Poston L. Selenium in reproductive health. Am. J. Obstet. Gynecol. 2012;206(1):21-30 https://doi.org/10.1016/j.ajog.2011.07.034

6. Winkel L., Johnson C., Lenz M., Grundl T., Leupin O., Amini M., et al. Environmental selenium research: from microscopic processes to global understanding. Environ. Sci. Technol. 2012;(46):571–579. doi: 10.1021/es203434d

7. Ros G., van Rotterda A., Bussink D., Bindraban P. Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soi. 2016;(404):99–112. doi: 10.1007/s11104-016-2830-4

8. Golubkina N.A., Papazyan T.T. Selenium in nutrition. Plants, animals, human beings. M., Printing town. 2006. (In Russ.)

9. Landini M., Gonzali S., Kiferle C., Tonacchera M., Agretti P., Dimida A., et al. Metabolic engineering of the iodine content in Arabidopsis. Sci Rep. 2012;(2):338. https://doi.org/10.1038/srep00338

10. Ebrahimi N., Hartikainen H., Hajiboland H., Seppanen M. Uptake and remobilization of selenium in Brassica napus L. plants supplied with selenate or seleniumenriched plant residues. J. Plant Nutr. Soil Sci. 201; 182(2):196-202. https://doi.org/10.1002/jpln.201700316

11. Kolbert Z.S., Sz˝oll˝osi R., Feigl G. Selenium-induced abiotic stress tolerance in plants. In Plant Tolerance to Environmental Stress Role of Phytoprotectants; Hasanuzzaman, M., Fujita, M., Oku, H., Islam, M.T., Eds.; CRC Press: Boca Raton, FL, USA, 2019: 255–270.

12. Ghasemi K., Bolandnazar S., Tabatabaei S.J., Pirdashti H., Arzanlou M., Ebrahimzadeh M.A., Fathi H. Antioxidant properties of garlic as affected by selenium and humic acid treatments. N. Z. J. Crop Hortic. Sci. 2015;43(3):173-181. https://doi.org/10.1080/01140671.2014.991743

13. Medrano-Macias J., Leija-Martinez P., Gonzales-Morales S., Juarez-Maldonado A., Benavides-Mendoza A. Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant Sci. 2016;(7):1146. doi: 10.3389/fpls.2016.01146

14. Gonzali S., Kiferle C., Perata, P. Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Plant Biotechnol. 2017;(44):16–26. doi: 10.1016/j.copbio.2016.10.004

15. Haghighi M., Ramezani M.R., Rajaii N. Improving oxidative damage, photosynthesis traits, growth and flower dropping of pepper under high temperature stress by selenium. Mol. Biol. Rep. 2019;46(1):497-503. https://doi.org/10.1007/s11033-0184502-3

16. Golubkina N., Moldovan A., Kekina H., Kharchenko V., Sekara A., Vasileva V., Skrypnik L., Tallarita A., Caruso G. Joint Biofortification of Plants with Iodine and Selenium: A New Field of Discoveries. Plants. 2021;10(7):1352. https://doi.org/.3390/plants10071352

17. Badawy S.A., Zayed B.A., Bassiouni S.M.A., Mahdi A.H.A., Majrashi A., Ali E.F., Seleiman M.F. Influence of Nano Silicon and Nano Selenium on Root Characters, Growth, Ion Selectivity, Yield, and Yield Components of Rice (Oryza sativa L.) under Salinity Conditions. Plants. 2021;10(8):1657. https://doi.org/10.3390/plants10081657

18. Kharchenko V.A., Moldovan A.I., Golubkina N.A., Gins M.S., Shafigullin D.R. Comparative evaluation of several biologically active compounds content n Anthriscus sylvestris (L.) Hoffm. and Anthriscus cerefolium (L.) Hoffm. Veg. Crop. Russ. 2020;(5):81-87]. https://doi.org/10.18619/2072-9146-2020-5-81-87

19. “Feeds. Methods for determination of dry matter content”.

20. Golubkina N.A., Kekina H.G., Molchanova A.V., Antoshkina M.S., Nadezhkin S.M., Soldatenko A.V. Plant antioxidants and methods for their determination. M., Infra-M. 2020. (In Russ.).

21. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods of Enzymology. 1987;(148):350-382 doi:10.1016/00766879(87)48036-1

22. Bradford M.M. A rapid sensitive method forthe quantification of microgram quantities of protein utilising the principle of protein-Dye Binding. Anal Biochem. 1976;(72):248-254. doi:10.1006/abio.1976.9999

23. Alfthan G.V. A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry. Anal. Chim. Acta. 1984;(165):187–194. https://doi.org/10.1016/S0003-2670(00)85199-5

24. Baranov V.I., Soldatenkova N.A., Kekina H.G. Iodine determination in marine products using inversion voltamperometry. Hygiene and Sanitary, 2008;(3):87-89.

25. Golubkina N., Moldovan A., Fedotov M., Kekina H., Kharchenko V., Folmanis G., Alpatov A., Caruso G. Iodine and Selenium Biofortification of Chervil Plants Treated with Silicon Nanoparticles. Plants. 2021;10(11):2528. https://doi.org/10.3390/plants10112528

26. Yao X., Chu J., Wang G. Effects of selenium on wheat seedlings under drought stress. Biol. Trace Elem. Res. 2009;(130):283–290. DOI 10.1007/s12011-009-83287

27. Hartikainen H., Xue T. The Promotive Effect of Selenium on Plant Growth as Triggered by Ultraviolet Irradiation. J. Environ. Qual. 1999;(28):1372–1375. https://doi.org/10.2134/jeq1999.00472425002800040043x

28. Dobosy P., Vetési V., Sandil S., Endrédi A., Kröpfl K., Óvári M., Takács T., Rékási M., Záray G. Effect of Irrigation Water Containing Iodine on Plant Physiological Processes and Elemental Concentrations of Cabbage (Brassica oleracea L. var. capitata L.) and Tomato (Solanum lycopersicum L.) Cultivated in Different Soils. Agronomy. 2020;10(5):720. https://doi.org/10.3390/agronomy10050720

29. Incrocci, L.; Carmassi, G.; Maggini, R.; Poli, C.; Saidov, D.; Tamburini, C.; Kiferle, C.; Perata, P.; Pardossi, A. Iodine Accumulation and Tolerance in Sweet Basil (Ocimum basilicum L.) with Green or Purple Leaves Grown in Floating System Technique. Front. Plant Sci. 2019;(10):1494. https://doi.org/10.3389/fpls.2019.01494

30. Kiferle C., Martinelli M., Salzano A. M., Gonzali S., Beltrami S., Salvadori P.A., Hora K., Holwerda H.T., Scaloni A., Perata P. Evidences for a Nutritional Role of Iodine in Plants. Front. Plant Sci., 2021;(12):616868. https://doi.org/10.3389/fpls.2021.616868

31. Barbosa M.A.M., la Silva M.H.L., Viana G.D.M., Ferreira T. R., de Carvalho Souza C.L.F., Lobato E.M.S.G., da Silva Lobato A.K. Beneficial repercussion of silicon (Si) application on photosynthetic pigments in maize plants. Aust. J. Crop Sci. 2015;9(11):1113-1118.

32. Salim B.B.M., El-Yazied A.A, Salama Y.A.M., Raza A., Osman H.S. Impact of silicon foliar application in enhancing antioxidants, growth, flowering and yield of squash plants under deficit irrigation condition. Ann. Agric. Sci. 2021;66(2):176-183. https://doi.org/10.1016/j.aoas.2021.12.003

33. Krzepiłko A., Swiȩciło A., Zych-Wȩzyk I. The Antioxidant Properties and Biological Quality of Radish Seedlings Biofortified with Iodine. Agronomy. 2021;(11):2011. https://doi.org/10.3390/agronomy11102011

34. Skrypnik L., Styran T., Savina T., Golubkina N. Effect of Selenium Application and Growth Stage at Harvest on Hydrophilic and Lipophilic Antioxidants in Lamb’s Lettuce (Valerianella locusta L. Laterr.). Plants. 2021;10(12):2733; https://doi.org/10.3390/plants10122733

35. Gupta M., Gupta S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front Plant Sci. 2016;(7):2074. doi: 10.3389/fpls.2016.02074


Review

For citations:


Moldovan A.I., Kharchenko V.A., Golubkina N.A., Kekina E.D., Caruso G. Foliar biofortification of chervil with selenium and iodine under silicon containing fertilizer supply. Vegetable crops of Russia. 2022;(2):57-64. (In Russ.) https://doi.org/10.18619/2072-9146-2022-2-57-64

Views: 383


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)