Preview

Vegetable crops of Russia

Advanced search

Assessment of water footprint of vegetable crops

https://doi.org/10.18619/2072-9146-2021-4-57-64

Abstract

Relevance. Agricultural production is the main consumer of water. Globally, about 70% of fresh water is annually used for agricultural (food and non-food) production. Nearly 40% of the world's food supply comes from irrigation. Globally, the scarcity of irrigation water due to competition between industry and urban consumption threatens food security. Future population growth, income growth and changes in nutrition are expected to increase demand for water. The rate of warming in Russia since the mid-1970s about 2.5 times the global average. The highest rate of temperature increase occurs at high latitudes. The entire territory of Russia is subject to warming, both as a whole for the year and in all seasons. Water Footprint Accounting (WF), proposed by the Water Footprint Network (WFN), has the potential to provide important information for water management, especially in water-stressed regions that rely on irrigation to meet food needs.
Methodology. The purpose of this systematic review was to collate and synthesize available data on global water use in vegetable production. Searched online databases covering the areas of environment, social sciences, public health, nutrition and agriculture: Web of Science Core Collection, Scopus, OvidSP MEDLINE, EconLit, OvidSP AGRIS, EBSCO GreenFILE, and OvidSP CAB Abstracts. The search was conducted using predefined search terms that included the concepts of "vegetable crops" and "water footprint".
Results. This article provides a brief overview of the vegetable growing water footprint and the sustainability of the blue water footprint. In general, a high green or overall (green + blue) WF may indicate that the vegetable crops are having low yields or inefficient water use. Low green and high blue WF indicate inefficient use of rainwater, which can lead to overexploitation of surface and groundwater. The water footprint can be considered a good economic ergometer, showing the level of water consumption required to obtain a certain vegetable product, whether it brings economic benefits or not, beneficial to society or not.

About the Authors

A. Y. Fedosov
All-Russian Scientific Research Institute of Vegetable Growing - Branch of the Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center
Russian Federation

Alexander Yu. Fedosov - Junior Researcher, Technology and Innovation Department

500, Vereya, Ramensky district, Moscow region



A. M. Menshikh
All-Russian Scientific Research Institute of Vegetable Growing - Branch of the Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center
Russian Federation

Alexander M. Menshikh – Cand. Sci. (Agriculture), Leading Researcher, Technology and Innovation Department

500, Vereya, Ramensky district, Moscow region



M. I. Ivanova
All-Russian Scientific Research Institute of Vegetable Growing - Branch of the Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center
Russian Federation

Maria I. Ivanova - Doc. Sci. (Agriculture), Professor of the Russian Academy of Sciences, Chief Researcher of the Department of Breeding and Seed Production

500, Vereya, Ramensky district, Moscow region



References

1. Pivovarov V.F., Razin A.F., Ivanova M.I., Meshcheryakova R.A., Razin O.A., Surikhina T.N., Lebedeva N.N. Regulatory support for the organic market (in the world, EAEU countries, Russia). Vegetable crops of Russia. 2021;(1):5-19. (In Russ.) https://doi.org/10.18619/2072-9146-2021-1-5-19]

2. Soldatenko A.V., Pivovarov V.F., Razin A.F., Meshcheryakova R.A., Shatilov M.V., Ivanova M.I., Taktarovа S.V., Razin O.A. The economy of vegetable growing: the state and the present. Vegetable crops of Russia. 2018;(5):63-68. (In Russ.) https://doi.org/10.18619/2072-9146-2018-5-63-68]

3. Soldatenko A.V., Razin A.F., Pivovarov V.F., Shatilov M.V., Ivanova M.I., Rossinskaya O.V., Razin O.A. Vegetables in the system of ensuring food security of Russia. Vegetable crops of Russia. 2019;(2):9-15. (In Russ.) https://doi.org/10.18619/2072-9146-2019-2-9-15.]

4. Cassidy E.S., West P.C., Gerber J.S., Foley J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013;(8):034015.

5. Chapagain A., Hoekstra A. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011;(70):749–758.

6. Conley D.J., Paerl H.W., Howarth R.W., Boesch D.F., Seitzinger S.P., Karl E., Lancelot C., Gene E. Controlling eutrophication: Nitrogen and phosphorus. Science. 2009;(123):1014–1015.

7. Deurer M., Green S.R., Clothier B.E., Mowat A. Can product water footprints indicate the hydrological impact of primary production? - A case study of New Zealand kiwifruit. J. Hydrol. 2011;(408):246–256.

8. Fader M., Gerten D., Thammer M., Heinke J., Lotze-Campen H., Lucht W., Cramer W. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 2011;(15):1641–1660.

9. Franke N.A., Boyacioglu H., Hoekstra A.Y. Grey Water Footprint Accounting: Tier 1 Supporting Guidelines; Value of Water Research Report Series No. 65; UNESCO-IHE: Delft, The Netherlands, 2013.

10. Ghufran M.A., Batool A., Irfan M.F., Butt M.A., Farooqi A. Water footprint of major cereals and some selected minor crops of Pakistan. J. Water Resour. Hydraul. Eng. 2015;(4):358–366.

11. Hanasaki N., Inuzuka T., Kanae S., Oki T. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological mode. J. Hydrol. 2010;(384):232–244.

12. Harris F., Moss C., Joy E.J.M., Quinn R., Scheelbeek P.F.D., Dangour A.D., Green R. The Water Footprint of Diets: A Global Systematic Review and Meta-analysis. Advances in Nutrition. 2020;11(2):375 386. https://doi.org/10.1093/advances/nmz091.

13. Hoekstra A.Y., Chapagain A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; John Wiley & Sons: New York, NY, USA, 2011.

14. Huang Z., Hejazi M., Tang Q., Vernon C.R., Liu Y., Chen M., Calvin K. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 2019;(574):242–256.

15. Ingwersen W.W. Life cycle assessment of fresh pineapple from Costa Ric. J. Clean. Prod. 2012;(35):152–163.

16. ISO. ISO 14044:2006: Environmental Management-Life Cycle Assessment-Requirements and Guidelines; ISO: Geneva, Switzerland, 2006.

17. ISO. ISO 14046:2014: Life Cycle Assessment-Water Footprint-Principles, Requirements and Guidelines; ISO: Geneva, Switzerland, 2014.

18. Jefferie D., Muñoz I., Hodges J., King V.J., Aldaya M., Ercin A.E., Canals L.M., Hoekstra A.Y. Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 2010;(33):155–166.

19. le Roux B., van der Laan M., Vahrmeijer T., Annandale J.G., Bristow K.L. Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit. Water. 2016;(8):473; doi:10.3390/w8100473.

20. Liu W., Yang H., Liu Y., Kummu M., Hoekstra A.Y., Liu J., Schulin R. Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification. Sci. Total Environ. 2018;(633):1591–1601.

21. Liu W., Antonelli M., Kummu M., Zhao X., Wu P., Liu J., Zhuo L., Yang H. Savings and losses of global water resources in food-related virtual water trade. WIREs Water. 2019;(6):e1320.

22. Lovarelli D., Bacenetti J., Fiala M. Water footprint of crop productions: A review. Sci. Total Environ. 2016;(548–549):236–251.

23. Mahan L.K., Escott-Stump S. Krause’s Food, Nutrition, & Diet Therapy, 11th ed.; Elsevier: New York, NY, USA, 2004.

24. Mekonnen M.M., Gerbens-Leenes W. The Water Footprint of Global Food Production. Water. 2020;(12):26-96.

25. Mekonnen M., Hoekstra A. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 2010;(14):1259–1276.

26. Mekonnen M.M., Hoekstra A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011;(15):1577–1600.

27. Mekonnen M.M., Hoekstra A.Y. A global assessment of the water footprint of farm animal products. Ecosystems. 2012;(15):401–415.

28. Multsch S., Pahlow M., Ellensohn J., Michalik T., Frede H.-G., Breuer L. A hotspot analysis of water footprints and groundwater decline in the high plains aquifer region, USA. Reg. Environ. Chang. 2016.

29. Nyambo P., Wakindiki I.I. Water footprint of growing vegetables in selected smallholder irrigation schemes in South Africa. Water SA. 2015;(41):571–578.

30. Pahlow M., Snowball J., Fraser G. Water footprint assessment to inform water management and policy making in South Africa. Water SA. 2015;(41):300–313.

31. Pegasys. Water Footprint Analysis for the Breede Catchment, South Africa Draft Report; Breede Overberg Catchment Management Agency: Cape Town, South Africa, 2012.

32. Ranchod N., Sheridan C.M., Pint N., Slatter K., Harding K.G. Assessing the bluewater footprint of an opencast platinum mine in South Africa. Water SA. 2015;(41): 287–293.

33. Rebitzer G., Ekvall T., Frischknecht R., Hunkeler D., Norris G., Rydberg T., Schmidt W.-P., Suh S., Weidema B.P., Pennington D.W. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004;(30):701–720.

34. Rost S., Gerten D., Bondeau A., Lucht W., Rohwer J., Schaphoff S. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 2008;(44):W09405. DOI:10.1029/2007WR006331

35. Scheepers M.E., Jordaan H. Assessing the blue and green water footprint of lucerne for milk production in South Africa. Sustainability. 2016;8(1), 49. https://doi.org/10.3390/su8010049.

36. Serio F., Miglietta P.P., Lamastra L., Ficocelli S., Intini F., De Deo F., De Donno A. Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia Region (Italy). Sci. Total Environ. 2018;(645):1425–1431.

37. Siebert S., Döll P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010;(384):198–217.

38. Smolders A.J., Lucassen E.C., Bobbink R., Roelofs J.G., Lamers L.P. How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: The Sulphur bridge. Biogeochemistry. 2010;(98):1–7.

39. Sun S., Wu P., Wang Y., Zhao X. Temporal variability of water footprint for maize production: The case of Beijing from 1978 to 2008. Water Resour. Manag. 2013;(27): 2447–2463.

40. Yang M., Guan X., Liu Y., Cui J., Ding C., Wang J. Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize. Acta Agron. Sin. 2019;(45):443–459.

41. Zhuo L., Mekonnen M.M., Hoekstra A.Y. Sensitivity and Uncertainty in Crop Water Footprint Accounting: A Case Study for the Yellow River Basin; UNESCO-IHE: Delft, The Netherlands, 2013.


Review

For citations:


Fedosov A.Y., Menshikh A.M., Ivanova M.I. Assessment of water footprint of vegetable crops. Vegetable crops of Russia. 2021;(4):57-64. (In Russ.) https://doi.org/10.18619/2072-9146-2021-4-57-64

Views: 650


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)