Preview

Vegetable crops of Russia

Advanced search

Obtaining doubled haploids of Cucurbita pepo L.

https://doi.org/10.18619/2072-9146-2021-4-11-26

Abstract

Doubled haploids have been widely used worldwide in breeding programs and fundamental research as valuable homozygous material for about 100 years. The species Cucurbita pepo L. are represented by a huge variety of forms, include highly productive vegetable crops and have a wide distribution in the world. Despite the great economic importance, the creation of effective protocols to ensure stable production of doubled haploids in this species remains an urgent task. DH plants are of interest not only because of the acceleration of the breeding process, but also because of the realization of the huge potential of gametoclonal variability inherent in this highly polymorphic species. In this review, we analyzed the main technologies used for obtaining doubled haploids in vegetable crops of C. pepo: parthenogenesis in situ stimulated by treated/irradiated pollen, gynogenesis in vitro (unpollinated ovule culture in vitro) and androgenesis in vitro (anther/microspore culture in vitro). An analysis is presented of the research carried out from the beginning of the discovery of haploid plants to the current advances and evaluation of the prospects in the field of DH plant production. The main critical factors influencing the efficiency of each technology and its individual steps are considered. The developed technology of doubled haploids obtaining using non-pollinated ovary culture in vitro is presented. This technology allows to obtain up to 55 embryoids per one cultivated ovary (28 embryoids/ 100 cultivated ovules) To introduce haploid technologies into the breeding process it is necessary to evaluate the obtained plants for ploidy level. The use of direct counting of chromosomes in apical cells may present a certain difficulty in this species due to their large number (2n=40) and their small size. Depending on the level of laboratory equipment, ploidy determination using flow cytometry of cell nuclei and counting the number of chloroplasts in stomatal guard cells in the epidermis of the abaxial side of the leaf may be more convenient methods. The prospects for the use of molecular markers for assessment for homozygosity in DH technologies used, including C. pepo, are discussed in the review.

About the Authors

E. A. Domblides
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Elena A. Domblides

14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, Russia, 143072



A. S. Ermolaev
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Alexey S.Ermolaev

14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, Russia, 143072



S. N. Belov
Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC)
Russian Federation

Sergey N. Belov

14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, Russia, 143072



References

1. Paris H.S. Summer squash: history, diversity, and distribution. HortTechnology. 1996;6(1):6–13.

2. Paris H.S. Summer squash. Vegetables I. 2008. p. 351–379.

3. Paris H.S. Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): progress and challenges. Euphytica. 2016;208(3):415–438.

4. FAOSTAT. [Электронный ресурс]. Режим доступа: http://www.fao.org/faostat/en/#data/QV Дата обращения: [17.05.2021]

5. Vavilov NI. On intergeneric hybrids of melons, watermelons and pumpkins (On the problem of the occurrence of species and generic systematic characters). Tr. by app. nerd. and selection. 1924; 1925:3–35. (In Russ.)

6. Paris H.S. A proposed subspecific classifiaction for Cucurbita pepo. Phytologia (USA). 1986.

7. Paris H.S. Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Economic Botany. 1989;43(4):423–443.

8. Košmrlj K, Murovec J., Bohanec B. Haploid induction in hull-less seed pumpkin through parthenogenesis induced by X-ray-irradiated pollen. Journal of the American Society for Horticultural Science. 2013;138(4):310–316. https://doi.org/10.21273/JASHS.138.4.310

9. Germana MA. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant cell reports. 2011;30(5):839–857.

10. Seguí-Simarro J.M., Moreno J.B., Fernández M.G., Mir R. Species with haploid or doubled haploid protocols. Doubled Haploid Technology. 2021. p. 41–103.

11. Blakeslee A.F., Belling J., Farnham M.E., Bergner A.D.. A haploid mutant in the jimson weed, ‘"Datura Stramonium". Science. 1922;55(1433): 646–647. https://doi.org/10.1126/science.55.1433.646

12. Belling J, Blakeslee AF. The Configurations and Sizes of the Chromosomes in the Trivalents of 25-Chromosome Daturas. Proceedings of the National Academy of Sciences. 1924;10(3): 116–120. https://doi.org/10.1073/pnas.10.3.116

13. Harland S.C., Harland S.C. Plant Breeding: Present Position and Future Perspective. . 15 pp. Cambridge: University Press. Plant breeding: present position and future perspective. IIIrd Bateson Lecture. 1955.

14. Harland SC. The genetical conception of the species. Biological Reviews. 1936;11(1):83–112. https://doi.org/10.1111/j.1469-185X.1936.tb00498.x

15. Clausen RE, Mann MC. Inheritance in Nicotiana Tabacum: V. The occurrence of haploid plants in interspecific progenies. Proceedings of the National Academy of Sciences. 1924;10(4):121–124. https://doi.org/10.1073/pnas.10.4.121

16. Gaines EF, Aase HC. A haploid wheat plant. American Journal of Botany. 1926;13(6):373. https://doi.org/10.2307/2435439

17. Lindstrom E.W. A haploid mutant in the Tomato*. Journal of Heredity. 1929;20(1):23–30. https://doi.org/10.1093/oxfordjournals.jhered.a103092

18. Kimber G., Riley R. The relationships of the diploid progenitors of hexaploid wheat. Canadian Journal of Genetics and Cytology. 1963;5(1):83–88. https://doi.org/10.1139/g63-012

19. Khokhlov S, Grishina E, Zaitseva M, Tyrnov B, Malysheva-Shishkinskaya H. Haploidy in angiosperms. 1970. 13 p. (In Russ.)

20. Karpechenko G.D., Shavinskaya S.A. Sexual isolation of Raphanus × Brassica tetraploid hybrids. All-Union. Congress on genetics, breeding, seed production and livestock breeding. 1930;(2):267-276. (In Russ.)

21. Navashin SG. On the change in the number and morphological characteristics of chromosomes in interspecific hybrids. Proceedings on Applied Botany, Genetics and Breeding. 1927;17(3):121-150. (Шт Russ.)

22. Vavilov N.I. Genetics at the service of socialist agriculture. 1932. (In Russ.)

23. Karpechenko G.D. Experimental polyploidy and haploidy. Theoretical foundations of plant breeding. 1935;(1):398-434. (In Russ.)

24. Ivanov MA. Experimental production of haploids in Nicotina rustica (with special consideration of haploidy in flowering plants). Izv. biol.-geogr. scientific research Institute at the East Siberian State. university. 1937;3(4):56–71. (In Russ.)

25. Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize, and in its component single cross hybrids and inbred lines. Genetics. 1949;34(3):328. https://doi.org/10.1093/genetics/34.3.328

26. Chase S.S. Monoploids in maize. Heterosis. 1952; 389–399.

27. Guha S., Maheshwari S.C. in vitro production of embryos from anthers of Datura. Nature. 1964;204(4957):497–497. https://doi.org/10.1038/204497a0

28. Guha S., Maheshwari S.C. Cell division and differentiation of embryos in the pollen grains of datura in vitro. Nature. 1966;212(5057): 97–98. https://doi.org/10.1038/212097a0

29. Hayase H. Cucurbita-crosses. V. Occurrence of a haploid twin pair from a F1 progeny of C. maximta x C. moschata. Ikushugaku zasshi. 1954;4(2): 115–121. https://doi.org/10.1270/jsbbs1951.4.115

30. Aalders L.E. Monoploidy in cucumbers. Journal of Heredity. 1958;49(1): 41–44. https://doi.org/10.1093/oxfordjournals.jhered.a106762

31. Lotfi M., Salehi S. Detection of cucumber parthenogenic haploid embryos by floating of immature seeds in liquid medium. IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. 2008. p. 375–380. https://w3.avignon.inra.fr/dspace/handle/2174/234

32. Baktemur G, Taşkin H, Büyükalaca S. Comparison of different methods for separation of haploid embryo induced through irradiated pollen and their economic analysis in melon (Cucumis melo var. inodorus). The Scientific World Journal. 2013;2013: 1–8. https://doi.org/10.1155/2013/529502

33. Dumas de Vaulx R. Obtention de plantes haploides chez le melon (Cucumis melo L.) apres pollinisation par Cucumis ficifolius A. Rich CR Acad Sci III-Vie. 1979;(289): 875–878.

34. Thompson KF. Oil-seed rape. 1972.

35. Ho K.M., Jones G.E. Mingo barley. Canadian Journal of Plant Science. 1980;60(1): 279–280.

36. Swaminathan M.S., Singh M.P. X-ray induced somatic haploidy in watermelon. Current Science. 1958;27(2):63–64.

37. Sinha S., Jha K.K., Roy R.P. In vitro development of callus from anthers in Luffa cylindrica. Current science. 1979.

38. Xue G.R., Yu W.Y., Fei K.W., Cui H.N., Sun R.X., GR X.. Yu W.Y., Fei K.W., Watermelon plants derived by in vitro anther culture. Plant Physiol Commun (CHN). 1983;(4): 4–42.

39. San Noeum LH. Haploides d, Hordeum vulgare L. par culture in vitro non fecondes. Ann. Amelior Plantes. 1976;(26):751–754.

40. Chambonnet D., De Vaulx R.D. Obtention of embryos and plants from in vitro culture of unfertilized ovules of Cucurbita pepo. Cucurbit Genet Coop. 1985;(8):66.

41. De Vaulx R.D., Chambonnet D. Obtention Of Embryos And Plants From In Vitro Culture Of Unfertilized Ovules Of Cucurbita Pepo. Genetic Manipulation in Plant Breeding. 1986. p. 295–298. https://doi.org/10.1515/9783110871944-048

42. Dirks R. Patent Number: 5,492,827. 1996. p. 1243–1244.

43. Gémesné Juhász A., Venczel G., Balogh P. Haploid plant induction in zucchini (cucurbita pepo l. Convar. Giromontiina duch) and in cucumber (cucumis sativus l.) Lines through in vitro gynogenesis. Acta Horticulturae. 1997;(447):623–626. https://doi.org/10.17660/ActaHortic.1997.447.124

44. Rakha M.T., Metwally E.I., Moustafa S.A., Etman A.A., Dewir Y.H. Evaluation of regenerated strains from six’Cucurbita’interspecific hybrids obtained through anther and ovule’in vitro’cultures. Australian Journal of Crop Science. 2012;6(1):23–30.

45. Min Z., Li H., Zou T., Tong L., Cheng J., Sun X. Studies of in vitro culture and plant regeneration of unfertilized ovary of pumpkin. Chinese Bulletin of Botany. 2016;51(1):74.

46. Sait K.E., Ahmet B., Ozbakir O.M. Production of callus mediated gynogenic haploids in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Czech journal of genetics and plant breeding. 2018;54(1):9–16.

47. Sauton A., Vaulx R.D., Dumas Vaulx R. Obtention de plantes haploïdes chez le melon (Cucumis melo L.) par gynogenèse induite par du pollen irradié. Agronomie. 1987;7(2):141–148. https://doi.org/10.1051/agro:19870209

48. Truong-Andre I. In vitro haploid plants derived from pollination by irradiated pollen on cucumber. Eucarpia meeting on cucurbit genetics and breeding, Montfavet (France), 31 May-2 Jun 1988. 1988.

49. Sauton A. Haploid gynogenesis in Cucumis sativus induced by irradiated pollen. Cucurbit Genetics Coop. 1989;(12):22–23.

50. Niemirowicz-Szczytt K., Dumas de Vaulx R. Preliminary data on haploid cucumber (Cucumis sativus L.) induction. Cucurbit Genet Coop. 1989;(12):24–25.

51. Kurtar ES, SarI N, Abak K. Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica. 2002;127(3):335–344. https://doi.org/10.1023/A:1020343900419

52. Kurtar E.S., Balkaya A., Ozbakir M., Ofluoglu T. Induction of haploid embryo and plant regeneration via irradiated pollen technique in pumpkin (Cucurbita moschata Duchesne ex. Poir). African Journal of Biotechnology. 2009;8(21):5944–5951.

53. Kurtar ES, Balkaya A. Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell, Tissue and Organ Culture (PCTOC). 2010;102(3):267–277. https://doi.org/10.1007/s11240-010-9729-1

54. Przyborowski J.A. Haploidy in cucumber (Cucumis sativus L.). 1996. p. 91–98. https://doi.org/10.1007/978-94-017-1858-5_6

55. Gałązka J., Niemirowicz-Szczytt K. Review of research on haploid production in cucumber and other cucurbits. Folia Horticulturae. 2013;25(1): 67–78. https://doi.org/10.2478/fhort-2013-0008

56. Dong Y.Q., Zhao W.X., Li X.H., Liu X.C., Gao N.N., Huang J.H., et al. Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Reports. 2016;35(10): 1991–2019. https://doi.org/10.1007/s00299-016-2018-7

57. Domblides E.A., Belov S.N., Soldatenko A.V., Pivovarov V.F. Production of Doubled Haploids in cucumber. Vegetable crops of Russia. 2019;(5):3–14. https://doi.org/10.18619/2072-9146-2019-5-3-14

58. Hooghvorst I, Nogués S. Opportunities and Challenges in Doubled Haploids and Haploid Inducer-Mediated Genome-Editing Systems in Cucurbits. Agronomy. 2020;10(9):1441. https://doi.org/10.3390/agronomy10091441

59. Kurtar ES, Seymen M. Gynogenesis in Cucurbita Species. Doubled Haploid Technology. 2021. p. 123–133. https://doi.org/10.1007/978-1-0716-1331-3_8

60. d’Hooghvorst I, Torrico O, Nogués S. Doubled Haploid Parthenogenetic Production of Melon ‘Piel de Sapo’. Doubled Haploid Technology. 2021. p. 87–95. https://doi.org/10.1007/978-1-0716-1331-3_5

61. Asadi A., Seguí-Simarro J.M. Production of Doubled Haploid Plants in Cucumber (Cucumis sativus L.) Through Anther Culture. Doubled Haploid Technology. 2021. p. 71–85. https://doi.org/10.1007/978-1-0716-1331-3_4

62. Kurtar E.S, Seymen M. Induction of Parthenogenesis by Irradiated Pollen in Cucurbita Species. Doubled Haploid Technology. 2021. p. 135–145. https://doi.org/10.1007/978-1-0716-1331-3_9

63. Kurtar E.S., Seymen M. Anther Culture in Cucurbita Species. Doubled Haploid Technology. 2021. p. 111–121. https://doi.org/10.1007/978-1-0716-1331-3_7

64. Kurtar E.S., Seymen M., Ünal K.AL. An overview of doubled haploid plant production in Cucurbita species. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2020;30(3):510–520.

65. Kurtar E.S., Seymen M., Çetın A.N., Türkmen Ö. Dihaploidization in promising summer squash genotypes (Cucurbita pepo L.) via irradiated pollen technique. Yuzuncu Yil University Journal of Agricultural Sciences. 2021;31(1):42–51. https://doi.org/10.29133/yyutbd.800475

66. Baktemur G., Yücel N.K., Taşkin H., ÇÖmlekçioǧlu S., Büyükalaca S. Effects of different genotypes and gamma ray doses on haploidization using irradiated pollen technique in squash. Turkish Journal of Biology. 2014;38(3):318–327. https://doi.org/10.3906/biy-1309-5

67. Ebrahimzadeh H., Lotfi M., Ghanavati F. Production of Haploids in Cucurbita pepo L . through Parthenogenesis Induced by Gamma-Irradiated Pollen ھاي بذري و رسيدن گلخانه تحقيقاتی پرديس ابوريحان دانشگاه تھران و د ر 2013;60 کشت شدند . پس از رشد گياھچه (40):99–108.

68. KURTAR ES, BALKAYA A, GÖÇMEN M. Hıyara (Cucumis sativus L.) Anaç Olabilecek Ümitvar Kabak (Cucurbita spp.) Genotiplerinde Işınlanmış Polen Tekniği İle Dihaploidizasyon. Selcuk Journal of Agricultural and Food Sciences. 2017;31(1):34–41. https://doi.org/10.15316/sjafs.2017.4

69. Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum. 1962;15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

70. Chée R.P., Leskovar D.I., Cantliffe D.J. Optimizing embryogenic callus and embryo growth of a synthetic seed system for sweetpotato by varying media nutrient concentrations. Journal of the American Society For Horticultural Science. 1992;117(4):663–667.

71. Metwally E.I., Moustafa S.A., El-Sawy B.I., Shalaby T.A. Haploid plantlets derived by anther culture of Cucurbita pepo. Plant Cell, Tissue and Organ Culture. 1998;52(3):171–176. https://doi.org/10.1023/A:1005908326663

72. Mohamed M.F., Refaei E.F.S. Enhanced Haploids Regeneration in Anther Culture of Summer Squash (Cucurbita pepo L.). Cucurbit Genetics Cooperative Report. 2004;27(January 2004):57–60.

73. Shalaby T.A. Embryogenesis and plantlets regeneration from anther culture of squash plants (Cucurbita pepo L.) as affected by different genotypes. J Agric Res Tanta Univ. 2006;32(1):173–183.

74. Shail J.W., Robinson R.W. Anther and ovule culture of Cucurbita. Cucurbit Genet Coop. 1987;(10):92.

75. Dunwell J.M. Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal. 2010;8(4):377–424. https://doi.org/10.1111/j.1467-7652.2009.00498.x

76. Nitsch C., Norreel B. Factors favoring the formation of androgenetic embryos in anther culture. Genes, Enzymes, and Populations. 1973. p. 129–144.

77. Metwally E.I., Moustafa S.A., El-Sawy B.I., Haroun S.A., Shalaby T.A. Production of haploid plants from in vitro culture of unpollinated ovules of Cucurbita pepo. Plant cell, tissue and organ culture. 1998;52(3):117–121.

78. Shalaby T.A. Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Scientia horticulturae. 2007;115(1):1–6.

79. Shmykova N.A., Suprunova T.P. Induction of gynogenesis in vitro culture of non-pollinated ovules of Cucumis sativus L. Gavrish. 2009; 40–44. (In Russ.)

80. Domblides, E., Shmykova, N., Khimich, G., Korotseva, I., Kan, L., Domblides, A., Pivovarov, V. and Soldatenko, A. Production of doubled haploid plants of Cucurbitaceae family crops through unpollinated ovule culture in vitro. Acta Hortic. 2020;(1294):19-28. DOI: 10.17660/ActaHortic.2020.1294.4 https://doi.org/10.17660/ActaHortic.2020.1294.4

81. Domblides E.A., Shmykova N.A., Zayachkovskaya T.V., Khimich G.A., Korotseva I.B., Kan L.Yu., et al. Obtaining doubled haploids in the culture of non-pollinated vegetable marrow (Cucurbita pepo L.). Biotechnology as a tool for the conservation of plant biodiversity (physiological, biochemical, embryological, genetic and legal aspect. 2016. p. 28–29. (In Russ.)

82. Bing X., Xiufeng W., Zhicheng F. Improved conditions of in vitro culture of unpollinated ovules and production of embryonary sac plants in summer squash (Cucurbita pepo L.). Scientia Agricultura Sinica. 2006;.

83. Andersen S.B., Christiansen I., Farestveit B. Carrot (Daucus carota L.): In Vitro Productionof Haploids and Field Trials. 1990. p. 393–402. https://doi.org/10.1007/978-3-642-61499-6_20 [6th November 2020]

84. Ribeiro C.B., Pereira F. de C., Nóbrega L. da, Rezende B.A., Dias K.O. das G., Braz G.T., et al. Haploid identification using tropicalized haploid inducer progenies in maize. Crop Breeding and Applied Biotechnology. 2018;(18):16–23.

85. Maluszynski M., Kasha K., Forster B.P., Szarejko I. Doubled haploid production in crop plants: a manual. 2003.

86. Ochatt S.J., Patat-Ochatt E.M., Moessner A.. Ploidy level determination within the context of in vitro breeding. Plant Cell, Tissue and Organ Culture (PCTOC). 2011;104(3):329–341.

87. Singh R.J. Plant cytogenetics CRC Press. Boca Raton. 2003.

88. Bohanec .B. Ploidy determination using flow cytometry. Doubled haploid production in crop plants. 2003. p. 397–403.

89. Snowdon R.J. Cytogenetics and genome analysis in Brassica crops. Chromosome Research. 2007;15(1):85–95.

90. Takahira J., Cousin A., Nelson M.N., Cowling W.A. Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell, Tissue and Organ Culture (PCTOC). 2011;104(1):51–59.

91. Domblides E.A., Kan L.Yu., Khimich G.A., Korotseva I.B., Domblides A.S. Cytological assessment of doubled haploids in summer squash (Cucurbita pepo L.). Vegetable crops of Russia. 2018;(6):3-7. (In Russ.) https://doi.org/10.18619/2072-9146-2018-6-3-7]

92. Ochatt S.J. Flow cytometry in plant breeding. Cytometry Part A: the journal of the International Society for Analytical Cytology. 2008;73(7):581–598.

93. Bartoš J., Alkhimova O., Doleželová M., De Langhe E., Doležel J. Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenetic and Genome Research. 2005;109(1–3):50–57.

94. Monakhos S.G., Nguen M.L., Bezbozhnaya A.V, Monakhos G.F. A relationship between ploidy level and the number of chloroplasts in stomatal guard cells in diploid and amphidiploid Brassica species. Сельскохозяйственная биология. 2014;(5 (eng)).

95. Yuan S., Liu Y-M., Fang Z-Y., Yang L-M., Zhuang M., Zhang Y-Y., et al. Study on the relationship between the ploidy level of microsporederived plants and the number of chloroplast in stomatal guard cells in Brassica oleracea. Agricultural Sciences in China. 2009;8(8):939–946.

96. Sharma S., Sarkar D., Pandey S.K. Phenotypic characterization and nuclear microsatellite analysis reveal genomic changes and rearrangements underlying androgenesis in tetraploid potatoes (Solanum tuberosum L.). Euphytica. 2010;171(3):313–326.

97. Irikova T., Grozeva S., Rodeva V. Anther culture in pepper (Capsicum annuum L.) in vitro. Acta physiologiae plantarum. 2011;33(5):1559–1570. https://doi.org/10.1007/s11738-011-0736-6

98. Garcia-Arias F., Sánchez-Betancourt E., Núñez V. Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agronomía Colombiana. 2018;36(3):201–209.

99. Maletsky SI, Yudanova SS, Maletskaya EI. Epigenomic and epiplastomic variability in haploid and dihaploid sugar beet plants (Beta vulgaris L.). Agricultural biology. 2015; (5)(In Russ.)

100. Ahmadi B. Ebrahimzadeh H. In vitro androgenesis: Spontaneous vs. artificial genome doubling and characterization of regenerants. Plant cell reports. 2020;39(3):299–316.

101. Höfer M., Grafe C., Boudichevskaja A., Lopez A., Bueno M.A., Roen D.. Characterization of plant material obtained by in vitro androgenesis and in situ parthenogenesis in apple. Scientia horticulturae. 2008;117(3):203–211.

102. Geiger H.H., Gordillo G.A.. Doubled haploids in hybrid maize breeding. Maydica. 2009;54(4):485.

103. Ficcadenti N., Sestili S., Pandolfini T., Cirillo C., Rotino G.L., Spena A. Genetic engineering of parthenocarpic fruit development in tomato. Molecular Breeding. 1999;5(5):463–470.

104. Munyon I.P., Hubstenberger J.F., Phillips G.C. Origin of plantlets and callus obtained from chile pepper anther cultures. In vitro cellular & developmental biology. 1989;25(3):293–296.

105. Suprunova T., Shmykova N., Pitrat M. In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. 2008; 371–374. https://w3.avignon.inra.fr/dspace/handle/2174/233

106. Hofinger B.J., Huynh O.A., Jankowicz-Cieslak J., Müller A., Otto I., Kumlehn J., et al. Validation of doubled haploid plants by enzymatic mismatch cleavage. Plant methods. 2013;9(1):1–10.

107. Diao W.P., Jia Y.Y., Song H., Zhang X.Q., Lou Q.F., Chen J.F. Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenetants using SSR markers. Scientia Horticulturae. 2009;119(3):246–251. https://doi.org/10.1016/j.scienta.2008.08.016

108. Chen Y., Hausner G., Kenaschuk E., Procunier D., Dribnenki P., Penner G.. Identification of microspore-derived plants in anther culture of flax (Linum usitatissimum L.) using molecular markers. Plant Cell Reports. 1998;18(1):44–48.

109. Kernan Z., Ferrie A.M.R. Microspore embryogenesis and the development of a double haploidy protocol for cow cockle (Saponaria vaccaria). Plant cell reports. 2006;25(4):274–280.

110. Song H., Lou Q-F.F., Luo X-DD., Wolukau J.N., Diao W-PP., Qian CTT., et al. Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant cell, tissue and organ culture. 2007;90(3):245–254. https://doi.org/10.1007/s11240-007-9263-y

111. Bouvier L., Guerif P.H., Djulbic M., Durel C-E., Chevreau E., Lespinasse Y. Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica. 2002;123(2):255–262.

112. Bartošová Z., Obert B., Takac T., Kormutak A., Pretová A. Using enzyme polymorphism to identify the gametic origin of flax regenerants. Acta Biol Cracov Bot. 2005;(47):173–178.

113. Górecka K., Krzyżanowska D., Kiszczak W., Kowalska U., Górecki R.. Carrot Doubled Haploids. Advances in Haploid Production in Higher Plants. 2009. p. 231–239. https://doi.org/10.1007/978-1-4020-8854-4_20

114. Kiszczak W., Burian M., Kowalska U., Górecka K., Podwyszyńska M. Production of Homozygous Red Beet (Beta vulgaris L. subsp. vulgaris) Plants by Ovule Culture. Doubled Haploid Technology. 2021. p.301–312.

115. Kiszczak W., Burian M., Kowalska U., Górecka K.. Production of Homozygous Carrot (Daucus carota L.) Plants by Anther Culture. Doubled Haploid Technology. 2021. p. 113–126.

116. Malik A.A, Li C., Shuxia Z., Jin-feng C., Cui L.I., Zhang S., et al. Efficiency of SSR markers for determining the origin of melon plantlets derived through unfertilized ovary culture. Horticultural Science. 2011;38(1):27–34. https://doi.org/10.17221/47/2010-hortsci

117. Anandhan S., Chavan A.A., Gopal J., Mote S.R., Shelke P.V., Lawande K.E. Variation in gynogenic potential for haploid induction in Indian short-day onions. Indian Journal of Genetics and Plant Breeding. 2014;74(4):526–528.

118. Cao H., Biswas MK., Lü Y., Amar M.H., Tong Z., Xu Q., et al. Doubled haploid callus lines of Valencia sweet orange recovered from anther culture. Plant Cell, Tissue and Organ Culture (PCTOC). 2011;104(3):415–423.

119. Aleza P., Juárez J., Hernández M., Pina J.A., Ollitrault P., Navarro L. Recovery and characterization of a Citrus clementina Hort. ex Tan.’Clemenules’ haploid plant selected to establish the reference whole Citrus genome sequence. BMC Plant Biology. 2009;9(1):1–17.

120. Wang S-M., Lan H., Cao H-B., Xu Q., Chen C-L., Deng X-X., et al. Recovery and characterization of homozygous lines from two sweet orange cultivars via anther culture. Plant Cell, Tissue and Organ Culture (PCTOC). 2015;123(3):633–644.

121. Kawano M., Yahata M., Shimizu T., Honsho C., Hirano T., Kunitake H. Production of doubled-haploid (DH) selfed-progenies in ‘Banpeiyu’pummelo [Citrus maxima (Burm.) Merr.] and its genetic analysis with simple sequence repeat markers. Scientia Horticulturae. 2021;(277):109782.

122. Perera P.I.P., Perera L., Hocher V., Verdeil J-L., Yakandawala D.M.D, Weerakoon LK. Use of SSR markers to determine the antherderived homozygous lines in coconut. Plant cell reports. 2008;27(11):1697–1703.

123. Varshney R.K., Marcel T.C., Ramsay L., Russell J,. Röder M.S., Stein N., et al. A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics. 2007;114(6):1091–1103.

124. Murovec J., Stajner N., Jakse J., Javornik B.. Microsatellite marker for homozygosity testing of putative doubled haploids and characterization of Mimulus species derived by a cross-genera approach. Journal of the American Society for Horticultural Science. 2007;132(5):659–663.

125. Chani E., Veilleux R.E., Boluarte-Medina T. Improved androgenesis of interspecific potato and efficiency of SSR markers to identify homozygous regenerants. Plant cell, tissue and organ culture. 2000;60(2):101–112.

126. Keleş D., Pınar H., Ata A., Taşkın H., Yıldız S., Büyükalaca S. Effect of pepper types on obtaining spontaneous doubled haploid plants via anther culture. HortScience. 2015;50(11):1671–1676.

127. Nelson M.N., Mason A.S., Castello M-C., Thomson L., Yan G., Cowling W.A. Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L.× Brassica carinata Braun. Theoretical and applied genetics. 2009;119(3):497–505.

128. Jankowicz-Cieslak J., Huynh O.A., Bado S., Matijevic M., Till B.J. Reverse-genetics by tilling expands through theplant kingdom. Emirates Journal of Food and Agriculture. 2011; 290–300.

129. Till B.J., Zerr T., Comai L., Henikoff S. A protocol for TILLING and Ecotilling in plants and animals. Nature protocols. 2006;1(5):2465–2477.

130. Till B.J., Jankowicz-Cieslak J., Sági L., Huynh O.A., Utsushi H., Swennen R., et al. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling. Theoretical and applied genetics. 2010;121(7):1381–1389.

131. Slade A.J., McGuire C., Loeffler D., Mullenberg J., Skinner W., Fazio G, et al. Development of high amylose wheat through TILLING. BMC plant biology. 2012;12(1):1–17.

132. Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, et al. TILLING-a shortcut in functional genomics. Journal of applied genetics. 2011;52(4):371–390.

133. Comai L., Young K., Till B.J., Reynolds S.H., Greene E.A., Codomo C.A., et al. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. The Plant Journal. 2004;37(5): 778–786.

134. Asadi A, Zebarjadi A., Abdollahi M.R., Seguí-Simarro J.M. Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.). Euphytica. 2018;214(11):216. https://doi.org/10.1007/s10681-018-2297-x

135. Danin-Poleg Y., Reis N., Tzuri G., Katzir N. Development and characterization of microsatellite markers in Cucumis. Theoretical and Applied Genetics. 2001;102(1):61–72.

136. Xiang C., Duan Y., Li H., Ma W., Huang S., Sui X., et al. A high-density EST-SSR-based genetic map and QTL analysis of dwarf trait in Cucurbita pepo L. International journal of molecular sciences. 2018;19(10):3140.

137. Zhu L., Zhu H., Li Y., Wang Y., Wu X., Li J. et al. Genome Wide Characterization, Comparative and Genetic Diversity Analysis of Simple Sequence Repeats in Cucurbita Species. Horticulturae. 2021;7(6):143.

138. Ravi M., Chan S.W.L. Haploid plants produced by centromeremediated genome elimination. Nature. 2010;464(7288):615–618.


Review

For citations:


Domblides E.A., Ermolaev A.S., Belov S.N. Obtaining doubled haploids of Cucurbita pepo L. Vegetable crops of Russia. 2021;(4):11-26. (In Russ.) https://doi.org/10.18619/2072-9146-2021-4-11-26

Views: 1429


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)