Preview

Овощи России

Расширенный поиск

Получение удвоенных гаплоидов Cucurbita pepo L.

https://doi.org/10.18619/2072-9146-2021-4-11-26

Аннотация

Удвоенные гаплоиды уже около 100 лет используются во всем мире в селекционных программах и фундаментальных исследованиях как ценный гомозиготный материал. Вид Cucurbita pepo L. представлен огромным многообразием форм, включает высокопродуктивные овощные культуры и имеет широкое распространение в мире. Несмотря на большую экономическую значимость, создание эффективных протоколов, обеспечивающих стабильное получение удвоенных гаплоидов у этого вида остается актуальной задачей. Получение DH-растений представляет интерес не только по причине ускорения селекционного процесса, но и за счет реализации огромного потенциала гаметоклональной изменчивости, заложенной у этого высоко полиморфного вида. В обзоре рассмотрены основные использующиеся технологии получения удвоенных гаплоидов у овощных культур C. pepo: партеногенез in situ стимулированный обработанной/облученной пыльцой, гиногенез in vitro (культура неопыленных семяпочек in vitro) и андрогенез in vitro (культура пыльников/микроспор in vitro). Представлен анализ исследований, проведенных с начала открытия гаплоидных растений до современных достижений и оценки перспектив в области получения DH растений. Рассмотрены основные критические факторы, влияющие на эффективность каждой из технологий и ее отдельных этапов. Представлена разработанная технология получения удвоенных гаплоидов кабачка с использованием культуры неопыленных семяпочек in vitro, позволяющая получать до 55 эмбриоидов на 1 культивируемую завязь (28 эмбриоидов/100 культивируемых семяпочек). Для внедрения гаплоидных технологий в селекционный процесс необходимо полученные растения-регенеранты оценивать на уровень плоидности. Использование прямого подсчета хромосом в апикальных клетках может представлять определенную сложность у этого вида ввиду большого их количества (2n=40) и их малого размера. В зависимости от уровня оснащения лаборатории определение плоидности с использованием проточной цитометрии клеточных ядер и подсчета количества хлоропластов в замыкающих клетках устьиц в эпителии абаксиальной стороны листа, может быть более удобными методами. В обзоре рассмотрены перспективы использования молекулярных маркеров для оценки на гомозиготность при DH-технологиях, в том числе и у C. pepo.

Об авторах

Е. А. Домблидес
Федеральное государственное бюджетное научное учреждение "Федеральный научный центр овощеводства" (ФГБНУ ФНЦО)
Россия

Елена Алексеевна Домблидес – кандидат с.-х. наук, зав. лаб. репродуктивной биотехнологии в селекции с.-х. растений

143072, Россия, Московская область, Одинцовский район, п. ВНИИССОК, ул. Селекционная, д. 14



Е. А. Ермолаев
Федеральное государственное бюджетное научное учреждение "Федеральный научный центр овощеводства" (ФГБНУ ФНЦО)
Россия

Алексей Станиславович Ермолаев - младший научный сотрудник лаборатории репродуктивной биотехнологии в селекции сельскохозяйственных растений

143072, Россия, Московская область, Одинцовский район, п. ВНИИССОК, ул. Селекционная, д.14



С. Н. Белов
Федеральное государственное бюджетное научное учреждение "Федеральный научный центр овощеводства" (ФГБНУ ФНЦО)
Россия

Сергей Николаевич Белов - младший научный сотрудник лаборатории репродуктивной биотехнологии в селекции сельскохозяйственных растений

143072, Россия, Московская область, Одинцовский район, п. ВНИИССОК, ул. Селекционная, д.14



Список литературы

1. Paris H.S. Summer squash: history, diversity, and distribution. HortTechnology. 1996;6(1):6–13.

2. Paris H.S. Summer squash. Vegetables I. 2008. p. 351–379.

3. Paris H.S. Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): progress and challenges. Euphytica. 2016;208(3):415–438.

4. FAOSTAT. [Электронный ресурс]. Режим доступа: http://www.fao.org/faostat/en/#data/QV Дата обращения: [17.05.2021]

5. Вавилов Н.И. О междуродовых гибридах дынь, арбузов и тыкв.(К проблеме о захождении видовых и родовых систематических признаков). Тр. по прикл. ботан. и селекции. 1924;1925:3–35.

6. Paris H.S. A proposed subspecific classifiaction for Cucurbita pepo. Phytologia (USA). 1986.

7. Paris H.S. Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Economic Botany. 1989;43(4):423–443.

8. Košmrlj K, Murovec J., Bohanec B. Haploid induction in hull-less seed pumpkin through parthenogenesis induced by X-ray-irradiated pollen. Journal of the American Society for Horticultural Science. 2013;138(4):310–316. https://doi.org/10.21273/JASHS.138.4.310

9. Germana MA. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant cell reports. 2011;30(5):839–857.

10. Seguí-Simarro J.M., Moreno J.B., Fernández M.G., Mir R. Species with haploid or doubled haploid protocols. Doubled Haploid Technology. 2021. p. 41–103.

11. Blakeslee A.F., Belling J., Farnham M.E., Bergner A.D.. A haploid mutant in the jimson weed, ‘"Datura Stramonium". Science. 1922;55(1433): 646–647. https://doi.org/10.1126/science.55.1433.646

12. Belling J, Blakeslee AF. The Configurations and Sizes of the Chromosomes in the Trivalents of 25-Chromosome Daturas. Proceedings of the National Academy of Sciences. 1924;10(3): 116–120. https://doi.org/10.1073/pnas.10.3.116

13. Harland S.C., Harland S.C. Plant Breeding: Present Position and Future Perspective. . 15 pp. Cambridge: University Press. Plant breeding: present position and future perspective. IIIrd Bateson Lecture. 1955.

14. Harland SC. The genetical conception of the species. Biological Reviews. 1936;11(1):83–112. https://doi.org/10.1111/j.1469-185X.1936.tb00498.x

15. Clausen RE, Mann MC. Inheritance in Nicotiana Tabacum: V. The occurrence of haploid plants in interspecific progenies. Proceedings of the National Academy of Sciences. 1924;10(4):121–124. https://doi.org/10.1073/pnas.10.4.121

16. Gaines EF, Aase HC. A haploid wheat plant. American Journal of Botany. 1926;13(6):373. https://doi.org/10.2307/2435439

17. Lindstrom E.W. A haploid mutant in the Tomato*. Journal of Heredity. 1929;20(1):23–30. https://doi.org/10.1093/oxfordjournals.jhered.a103092

18. Kimber G., Riley R. The relationships of the diploid progenitors of hexaploid wheat. Canadian Journal of Genetics and Cytology. 1963;5(1):83–88. https://doi.org/10.1139/g63-012

19. Хохлов C., Гришина Е., Зайцева М., Тырнов B., Малышева-Шишкинская H. Гаплоидия у покрытосеменных растений. 1970. 13 c.

20. Карпеченко Г.Д., Щавинская С.А. О половом обособлении тетраплоидных гибридов Raphanus × Brassica. Тр. Всесоюз. съезда по генетике, селекции, семеноводству и племенному животноводству. 1930;(2):267–276.

21. Навашин С.Г. Об изменении числа и морфологических признаков хромосом у межвидовых гибридов. Тр. по прикл. ботан. и селекции. 1927;17(3):121–150.

22. Вавилов Н.И. Генетика на службе социалистического земледелия. 1932.

23. Карпеченко ГД. Экспериментальная полиплоидия и гаплоидия. Теоретические основы селекции растений. 1935;1: 398–434.

24. Иванов М.А. Экспериментальное получение гаплоидов у Nicotina rustica (со специальным рассмотрением гаплоидии у цветковых растений). Изв. биол.-геогр. научн.-иссл. института при Восточно-Сибирском гос. университете. 1937;3(4): 56–71.

25. Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize, and in its component single cross hybrids and inbred lines. Genetics. 1949;34(3):328. https://doi.org/10.1093/genetics/34.3.328

26. Chase S.S. Monoploids in maize. Heterosis. 1952; 389–399.

27. Guha S., Maheshwari S.C. in vitro production of embryos from anthers of Datura. Nature. 1964;204(4957):497–497. https://doi.org/10.1038/204497a0

28. Guha S., Maheshwari S.C. Cell division and differentiation of embryos in the pollen grains of datura in vitro. Nature. 1966;212(5057): 97–98. https://doi.org/10.1038/212097a0

29. Hayase H. Cucurbita-crosses. V. Occurrence of a haploid twin pair from a F1 progeny of C. maximta x C. moschata. Ikushugaku zasshi. 1954;4(2): 115–121. https://doi.org/10.1270/jsbbs1951.4.115

30. Aalders L.E. Monoploidy in cucumbers. Journal of Heredity. 1958;49(1): 41–44. https://doi.org/10.1093/oxfordjournals.jhered.a106762

31. Lotfi M., Salehi S. Detection of cucumber parthenogenic haploid embryos by floating of immature seeds in liquid medium. IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. 2008. p. 375–380. https://w3.avignon.inra.fr/dspace/handle/2174/234

32. Baktemur G, Taşkin H, Büyükalaca S. Comparison of different methods for separation of haploid embryo induced through irradiated pollen and their economic analysis in melon (Cucumis melo var. inodorus). The Scientific World Journal. 2013;2013: 1–8. https://doi.org/10.1155/2013/529502

33. Dumas de Vaulx R. Obtention de plantes haploides chez le melon (Cucumis melo L.) apres pollinisation par Cucumis ficifolius A. Rich CR Acad Sci III-Vie. 1979;(289): 875–878.

34. Thompson KF. Oil-seed rape. 1972.

35. Ho K.M., Jones G.E. Mingo barley. Canadian Journal of Plant Science. 1980;60(1): 279–280.

36. Swaminathan M.S., Singh M.P. X-ray induced somatic haploidy in watermelon. Current Science. 1958;27(2):63–64.

37. Sinha S., Jha K.K., Roy R.P. In vitro development of callus from anthers in Luffa cylindrica. Current science. 1979.

38. Xue G.R., Yu W.Y., Fei K.W., Cui H.N., Sun R.X., GR X.. Yu W.Y., Fei K.W., Watermelon plants derived by in vitro anther culture. Plant Physiol Commun (CHN). 1983;(4): 4–42.

39. San Noeum LH. Haploides d, Hordeum vulgare L. par culture in vitro non fecondes. Ann. Amelior Plantes. 1976;(26):751–754.

40. Chambonnet D., De Vaulx R.D. Obtention of embryos and plants from in vitro culture of unfertilized ovules of Cucurbita pepo. Cucurbit Genet Coop. 1985;(8):66.

41. De Vaulx R.D., Chambonnet D. Obtention Of Embryos And Plants From In Vitro Culture Of Unfertilized Ovules Of Cucurbita Pepo. Genetic Manipulation in Plant Breeding. 1986. p. 295–298. https://doi.org/10.1515/9783110871944-048

42. Dirks R. Patent Number: 5,492,827. 1996. p. 1243–1244.

43. Gémesné Juhász A., Venczel G., Balogh P. Haploid plant induction in zucchini (cucurbita pepo l. Convar. Giromontiina duch) and in cucumber (cucumis sativus l.) Lines through in vitro gynogenesis. Acta Horticulturae. 1997;(447):623–626. https://doi.org/10.17660/ActaHortic.1997.447.124

44. Rakha M.T., Metwally E.I., Moustafa S.A., Etman A.A., Dewir Y.H. Evaluation of regenerated strains from six’Cucurbita’interspecific hybrids obtained through anther and ovule’in vitro’cultures. Australian Journal of Crop Science. 2012;6(1):23–30.

45. Min Z., Li H., Zou T., Tong L., Cheng J., Sun X. Studies of in vitro culture and plant regeneration of unfertilized ovary of pumpkin. Chinese Bulletin of Botany. 2016;51(1):74.

46. Sait K.E., Ahmet B., Ozbakir O.M. Production of callus mediated gynogenic haploids in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Czech journal of genetics and plant breeding. 2018;54(1):9–16.

47. Sauton A., Vaulx R.D., Dumas Vaulx R. Obtention de plantes haploïdes chez le melon (Cucumis melo L.) par gynogenèse induite par du pollen irradié. Agronomie. 1987;7(2):141–148. https://doi.org/10.1051/agro:19870209

48. Truong-Andre I. In vitro haploid plants derived from pollination by irradiated pollen on cucumber. Eucarpia meeting on cucurbit genetics and breeding, Montfavet (France), 31 May-2 Jun 1988. 1988.

49. Sauton A. Haploid gynogenesis in Cucumis sativus induced by irradiated pollen. Cucurbit Genetics Coop. 1989;(12):22–23.

50. Niemirowicz-Szczytt K., Dumas de Vaulx R. Preliminary data on haploid cucumber (Cucumis sativus L.) induction. Cucurbit Genet Coop. 1989;(12):24–25.

51. Kurtar ES, SarI N, Abak K. Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica. 2002;127(3):335–344. https://doi.org/10.1023/A:1020343900419

52. Kurtar E.S., Balkaya A., Ozbakir M., Ofluoglu T. Induction of haploid embryo and plant regeneration via irradiated pollen technique in pumpkin (Cucurbita moschata Duchesne ex. Poir). African Journal of Biotechnology. 2009;8(21):5944–5951.

53. Kurtar ES, Balkaya A. Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell, Tissue and Organ Culture (PCTOC). 2010;102(3):267–277. https://doi.org/10.1007/s11240-010-9729-1

54. Przyborowski J.A. Haploidy in cucumber (Cucumis sativus L.). 1996. p. 91–98. https://doi.org/10.1007/978-94-017-1858-5_6

55. Gałązka J., Niemirowicz-Szczytt K. Review of research on haploid production in cucumber and other cucurbits. Folia Horticulturae. 2013;25(1): 67–78. https://doi.org/10.2478/fhort-2013-0008

56. Dong Y.Q., Zhao W.X., Li X.H., Liu X.C., Gao N.N., Huang J.H., et al. Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Reports. 2016;35(10): 1991–2019. https://doi.org/10.1007/s00299-016-2018-7

57. Domblides E.A., Belov S.N., Soldatenko A.V., Pivovarov V.F. Production of Doubled Haploids in cucumber. Vegetable crops of Russia. 2019;(5):3–14. https://doi.org/10.18619/2072-9146-2019-5-3-14

58. Hooghvorst I, Nogués S. Opportunities and Challenges in Doubled Haploids and Haploid Inducer-Mediated Genome-Editing Systems in Cucurbits. Agronomy. 2020;10(9):1441. https://doi.org/10.3390/agronomy10091441

59. Kurtar ES, Seymen M. Gynogenesis in Cucurbita Species. Doubled Haploid Technology. 2021. p. 123–133. https://doi.org/10.1007/978-1-0716-1331-3_8

60. d’Hooghvorst I, Torrico O, Nogués S. Doubled Haploid Parthenogenetic Production of Melon ‘Piel de Sapo’. Doubled Haploid Technology. 2021. p. 87–95. https://doi.org/10.1007/978-1-0716-1331-3_5

61. Asadi A., Seguí-Simarro J.M. Production of Doubled Haploid Plants in Cucumber (Cucumis sativus L.) Through Anther Culture. Doubled Haploid Technology. 2021. p. 71–85. https://doi.org/10.1007/978-1-0716-1331-3_4

62. Kurtar E.S, Seymen M. Induction of Parthenogenesis by Irradiated Pollen in Cucurbita Species. Doubled Haploid Technology. 2021. p. 135–145. https://doi.org/10.1007/978-1-0716-1331-3_9

63. Kurtar E.S., Seymen M. Anther Culture in Cucurbita Species. Doubled Haploid Technology. 2021. p. 111–121. https://doi.org/10.1007/978-1-0716-1331-3_7

64. Kurtar E.S., Seymen M., Ünal K.AL. An overview of doubled haploid plant production in Cucurbita species. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2020;30(3):510–520.

65. Kurtar E.S., Seymen M., Çetın A.N., Türkmen Ö. Dihaploidization in promising summer squash genotypes (Cucurbita pepo L.) via irradiated pollen technique. Yuzuncu Yil University Journal of Agricultural Sciences. 2021;31(1):42–51. https://doi.org/10.29133/yyutbd.800475

66. Baktemur G., Yücel N.K., Taşkin H., ÇÖmlekçioǧlu S., Büyükalaca S. Effects of different genotypes and gamma ray doses on haploidization using irradiated pollen technique in squash. Turkish Journal of Biology. 2014;38(3):318–327. https://doi.org/10.3906/biy-1309-5

67. Ebrahimzadeh H., Lotfi M., Ghanavati F. Production of Haploids in Cucurbita pepo L . through Parthenogenesis Induced by Gamma-Irradiated Pollen ھاي بذري و رسيدن گلخانه تحقيقاتی پرديس ابوريحان دانشگاه تھران و د ر 2013;60 کشت شدند . پس از رشد گياھچه (40):99–108.

68. KURTAR ES, BALKAYA A, GÖÇMEN M. Hıyara (Cucumis sativus L.) Anaç Olabilecek Ümitvar Kabak (Cucurbita spp.) Genotiplerinde Işınlanmış Polen Tekniği İle Dihaploidizasyon. Selcuk Journal of Agricultural and Food Sciences. 2017;31(1):34–41. https://doi.org/10.15316/sjafs.2017.4

69. Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum. 1962;15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

70. Chée R.P., Leskovar D.I., Cantliffe D.J. Optimizing embryogenic callus and embryo growth of a synthetic seed system for sweetpotato by varying media nutrient concentrations. Journal of the American Society For Horticultural Science. 1992;117(4):663–667.

71. Metwally E.I., Moustafa S.A., El-Sawy B.I., Shalaby T.A. Haploid plantlets derived by anther culture of Cucurbita pepo. Plant Cell, Tissue and Organ Culture. 1998;52(3):171–176. https://doi.org/10.1023/A:1005908326663

72. Mohamed M.F., Refaei E.F.S. Enhanced Haploids Regeneration in Anther Culture of Summer Squash (Cucurbita pepo L.). Cucurbit Genetics Cooperative Report. 2004;27(January 2004):57–60.

73. Shalaby T.A. Embryogenesis and plantlets regeneration from anther culture of squash plants (Cucurbita pepo L.) as affected by different genotypes. J Agric Res Tanta Univ. 2006;32(1):173–183.

74. Shail J.W., Robinson R.W. Anther and ovule culture of Cucurbita. Cucurbit Genet Coop. 1987;(10):92.

75. Dunwell J.M. Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal. 2010;8(4):377–424. https://doi.org/10.1111/j.1467-7652.2009.00498.x

76. Nitsch C., Norreel B. Factors favoring the formation of androgenetic embryos in anther culture. Genes, Enzymes, and Populations. 1973. p. 129–144.

77. Metwally E.I., Moustafa S.A., El-Sawy B.I., Haroun S.A., Shalaby T.A. Production of haploid plants from in vitro culture of unpollinated ovules of Cucurbita pepo. Plant cell, tissue and organ culture. 1998;52(3):117–121.

78. Shalaby T.A. Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Scientia horticulturae. 2007;115(1):1–6.

79. Шмыкова Н.А., Супрунова Т.П. Индукция гиногенеза в культуре in vitro неопыленных семяпочек Cucumis sativus L . Гавриш. 2009; 40–44.

80. Domblides, E., Shmykova, N., Khimich, G., Korotseva, I., Kan, L., Domblides, A., Pivovarov, V. and Soldatenko, A. Production of doubled haploid plants of Cucurbitaceae family crops through unpollinated ovule culture in vitro. Acta Hortic. 2020;(1294):19-28. DOI: 10.17660/ActaHortic.2020.1294.4 https://doi.org/10.17660/ActaHortic.2020.1294.4

81. Домблидес Е.А., Шмыкова Н.А., Заячковская Т.В., Химич Г.А., Коротцева И.Б., Кан Л.Ю., et al. Получение удвоенных гаплоидов в культуре неопыленных семяпочек кабачка (Cucurbita pepo L.). Биотехнология как инструмент сохранения биоразнообразия растительного мира (физиолого-биохимические, эмбриологические, генетические и правовые аспекты). 2016. p. 28–29.

82. Bing X., Xiufeng W., Zhicheng F. Improved conditions of in vitro culture of unpollinated ovules and production of embryonary sac plants in summer squash (Cucurbita pepo L.). Scientia Agricultura Sinica. 2006;.

83. Andersen S.B., Christiansen I., Farestveit B. Carrot (Daucus carota L.): In Vitro Productionof Haploids and Field Trials. 1990. p. 393–402. https://doi.org/10.1007/978-3-642-61499-6_20 [6th November 2020]

84. Ribeiro C.B., Pereira F. de C., Nóbrega L. da, Rezende B.A., Dias K.O. das G., Braz G.T., et al. Haploid identification using tropicalized haploid inducer progenies in maize. Crop Breeding and Applied Biotechnology. 2018;(18):16–23.

85. Maluszynski M., Kasha K., Forster B.P., Szarejko I. Doubled haploid production in crop plants: a manual. 2003.

86. Ochatt S.J., Patat-Ochatt E.M., Moessner A.. Ploidy level determination within the context of in vitro breeding. Plant Cell, Tissue and Organ Culture (PCTOC). 2011;104(3):329–341.

87. Singh R.J. Plant cytogenetics CRC Press. Boca Raton. 2003.

88. Bohanec .B. Ploidy determination using flow cytometry. Doubled haploid production in crop plants. 2003. p. 397–403.

89. Snowdon R.J. Cytogenetics and genome analysis in Brassica crops. Chromosome Research. 2007;15(1):85–95.

90. Takahira J., Cousin A., Nelson M.N., Cowling W.A. Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell, Tissue and Organ Culture (PCTOC). 2011;104(1):51–59.

91. Домблидес Е.А., Кан Л.Ю., Химич Г.А., Коротцева И.Б., Домблидес А.С. Цитологическая оценка удвоенных гаплоидов кабачка (Cucurbita pepo L.). Овощи России. 2018;(6):3-7. https://doi.org/10.18619/2072-9146-2018-6-3-7

92. Ochatt S.J. Flow cytometry in plant breeding. Cytometry Part A: the journal of the International Society for Analytical Cytology. 2008;73(7):581–598.

93. Bartoš J., Alkhimova O., Doleželová M., De Langhe E., Doležel J. Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenetic and Genome Research. 2005;109(1–3):50–57.

94. Monakhos S.G., Nguen M.L., Bezbozhnaya A.V, Monakhos G.F. A relationship between ploidy level and the number of chloroplasts in stomatal guard cells in diploid and amphidiploid Brassica species. Сельскохозяйственная биология. 2014;(5 (eng)).

95. Yuan S., Liu Y-M., Fang Z-Y., Yang L-M., Zhuang M., Zhang Y-Y., et al. Study on the relationship between the ploidy level of microsporederived plants and the number of chloroplast in stomatal guard cells in Brassica oleracea. Agricultural Sciences in China. 2009;8(8):939–946.

96. Sharma S., Sarkar D., Pandey S.K. Phenotypic characterization and nuclear microsatellite analysis reveal genomic changes and rearrangements underlying androgenesis in tetraploid potatoes (Solanum tuberosum L.). Euphytica. 2010;171(3):313–326.

97. Irikova T., Grozeva S., Rodeva V. Anther culture in pepper (Capsicum annuum L.) in vitro. Acta physiologiae plantarum. 2011;33(5):1559–1570. https://doi.org/10.1007/s11738-011-0736-6

98. Garcia-Arias F., Sánchez-Betancourt E., Núñez V. Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agronomía Colombiana. 2018;36(3):201–209.

99. Малецкий СИ, Юданова СС, Малецкая ЕИ. Эпигеномная и эпипластомная изменчивость у гаплоидных и дигаплоидных растений сахарной свеклы (Beta vulgaris L.). Сельскохозяйственная биология. 2015;(5).

100. Ahmadi B. Ebrahimzadeh H. In vitro androgenesis: Spontaneous vs. artificial genome doubling and characterization of regenerants. Plant cell reports. 2020;39(3):299–316.

101. Höfer M., Grafe C., Boudichevskaja A., Lopez A., Bueno M.A., Roen D.. Characterization of plant material obtained by in vitro androgenesis and in situ parthenogenesis in apple. Scientia horticulturae. 2008;117(3):203–211.

102. Geiger H.H., Gordillo G.A.. Doubled haploids in hybrid maize breeding. Maydica. 2009;54(4):485.

103. Ficcadenti N., Sestili S., Pandolfini T., Cirillo C., Rotino G.L., Spena A. Genetic engineering of parthenocarpic fruit development in tomato. Molecular Breeding. 1999;5(5):463–470.

104. Munyon I.P., Hubstenberger J.F., Phillips G.C. Origin of plantlets and callus obtained from chile pepper anther cultures. In vitro cellular & developmental biology. 1989;25(3):293–296.

105. Suprunova T., Shmykova N., Pitrat M. In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. 2008; 371–374. https://w3.avignon.inra.fr/dspace/handle/2174/233

106. Hofinger B.J., Huynh O.A., Jankowicz-Cieslak J., Müller A., Otto I., Kumlehn J., et al. Validation of doubled haploid plants by enzymatic mismatch cleavage. Plant methods. 2013;9(1):1–10.

107. Diao W.P., Jia Y.Y., Song H., Zhang X.Q., Lou Q.F., Chen J.F. Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenetants using SSR markers. Scientia Horticulturae. 2009;119(3):246–251. https://doi.org/10.1016/j.scienta.2008.08.016

108. Chen Y., Hausner G., Kenaschuk E., Procunier D., Dribnenki P., Penner G.. Identification of microspore-derived plants in anther culture of flax (Linum usitatissimum L.) using molecular markers. Plant Cell Reports. 1998;18(1):44–48.

109. Kernan Z., Ferrie A.M.R. Microspore embryogenesis and the development of a double haploidy protocol for cow cockle (Saponaria vaccaria). Plant cell reports. 2006;25(4):274–280.

110. Song H., Lou Q-F.F., Luo X-DD., Wolukau J.N., Diao W-PP., Qian CTT., et al. Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant cell, tissue and organ culture. 2007;90(3):245–254. https://doi.org/10.1007/s11240-007-9263-y

111. Bouvier L., Guerif P.H., Djulbic M., Durel C-E., Chevreau E., Lespinasse Y. Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica. 2002;123(2):255–262.

112. Bartošová Z., Obert B., Takac T., Kormutak A., Pretová A. Using enzyme polymorphism to identify the gametic origin of flax regenerants. Acta Biol Cracov Bot. 2005;(47):173–178.

113. Górecka K., Krzyżanowska D., Kiszczak W., Kowalska U., Górecki R.. Carrot Doubled Haploids. Advances in Haploid Production in Higher Plants. 2009. p. 231–239. https://doi.org/10.1007/978-1-4020-8854-4_20

114. Kiszczak W., Burian M., Kowalska U., Górecka K., Podwyszyńska M. Production of Homozygous Red Beet (Beta vulgaris L. subsp. vulgaris) Plants by Ovule Culture. Doubled Haploid Technology. 2021. p.301–312.

115. Kiszczak W., Burian M., Kowalska U., Górecka K.. Production of Homozygous Carrot (Daucus carota L.) Plants by Anther Culture. Doubled Haploid Technology. 2021. p. 113–126.

116. Malik A.A, Li C., Shuxia Z., Jin-feng C., Cui L.I., Zhang S., et al. Efficiency of SSR markers for determining the origin of melon plantlets derived through unfertilized ovary culture. Horticultural Science. 2011;38(1):27–34. https://doi.org/10.17221/47/2010-hortsci

117. Anandhan S., Chavan A.A., Gopal J., Mote S.R., Shelke P.V., Lawande K.E. Variation in gynogenic potential for haploid induction in Indian short-day onions. Indian Journal of Genetics and Plant Breeding. 2014;74(4):526–528.

118. Cao H., Biswas MK., Lü Y., Amar M.H., Tong Z., Xu Q., et al. Doubled haploid callus lines of Valencia sweet orange recovered from anther culture. Plant Cell, Tissue and Organ Culture (PCTOC). 2011;104(3):415–423.

119. Aleza P., Juárez J., Hernández M., Pina J.A., Ollitrault P., Navarro L. Recovery and characterization of a Citrus clementina Hort. ex Tan.’Clemenules’ haploid plant selected to establish the reference whole Citrus genome sequence. BMC Plant Biology. 2009;9(1):1–17.

120. Wang S-M., Lan H., Cao H-B., Xu Q., Chen C-L., Deng X-X., et al. Recovery and characterization of homozygous lines from two sweet orange cultivars via anther culture. Plant Cell, Tissue and Organ Culture (PCTOC). 2015;123(3):633–644.

121. Kawano M., Yahata M., Shimizu T., Honsho C., Hirano T., Kunitake H. Production of doubled-haploid (DH) selfed-progenies in ‘Banpeiyu’pummelo [Citrus maxima (Burm.) Merr.] and its genetic analysis with simple sequence repeat markers. Scientia Horticulturae. 2021;(277):109782.

122. Perera P.I.P., Perera L., Hocher V., Verdeil J-L., Yakandawala D.M.D, Weerakoon LK. Use of SSR markers to determine the antherderived homozygous lines in coconut. Plant cell reports. 2008;27(11):1697–1703.

123. Varshney R.K., Marcel T.C., Ramsay L., Russell J,. Röder M.S., Stein N., et al. A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics. 2007;114(6):1091–1103.

124. Murovec J., Stajner N., Jakse J., Javornik B.. Microsatellite marker for homozygosity testing of putative doubled haploids and characterization of Mimulus species derived by a cross-genera approach. Journal of the American Society for Horticultural Science. 2007;132(5):659–663.

125. Chani E., Veilleux R.E., Boluarte-Medina T. Improved androgenesis of interspecific potato and efficiency of SSR markers to identify homozygous regenerants. Plant cell, tissue and organ culture. 2000;60(2):101–112.

126. Keleş D., Pınar H., Ata A., Taşkın H., Yıldız S., Büyükalaca S. Effect of pepper types on obtaining spontaneous doubled haploid plants via anther culture. HortScience. 2015;50(11):1671–1676.

127. Nelson M.N., Mason A.S., Castello M-C., Thomson L., Yan G., Cowling W.A. Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L.× Brassica carinata Braun. Theoretical and applied genetics. 2009;119(3):497–505.

128. Jankowicz-Cieslak J., Huynh O.A., Bado S., Matijevic M., Till B.J. Reverse-genetics by tilling expands through theplant kingdom. Emirates Journal of Food and Agriculture. 2011; 290–300.

129. Till B.J., Zerr T., Comai L., Henikoff S. A protocol for TILLING and Ecotilling in plants and animals. Nature protocols. 2006;1(5):2465–2477.

130. Till B.J., Jankowicz-Cieslak J., Sági L., Huynh O.A., Utsushi H., Swennen R., et al. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling. Theoretical and applied genetics. 2010;121(7):1381–1389.

131. Slade A.J., McGuire C., Loeffler D., Mullenberg J., Skinner W., Fazio G, et al. Development of high amylose wheat through TILLING. BMC plant biology. 2012;12(1):1–17.

132. Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, et al. TILLING-a shortcut in functional genomics. Journal of applied genetics. 2011;52(4):371–390.

133. Comai L., Young K., Till B.J., Reynolds S.H., Greene E.A., Codomo C.A., et al. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. The Plant Journal. 2004;37(5): 778–786.

134. Asadi A, Zebarjadi A., Abdollahi M.R., Seguí-Simarro J.M. Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.). Euphytica. 2018;214(11):216. https://doi.org/10.1007/s10681-018-2297-x

135. Danin-Poleg Y., Reis N., Tzuri G., Katzir N. Development and characterization of microsatellite markers in Cucumis. Theoretical and Applied Genetics. 2001;102(1):61–72.

136. Xiang C., Duan Y., Li H., Ma W., Huang S., Sui X., et al. A high-density EST-SSR-based genetic map and QTL analysis of dwarf trait in Cucurbita pepo L. International journal of molecular sciences. 2018;19(10):3140.

137. Zhu L., Zhu H., Li Y., Wang Y., Wu X., Li J. et al. Genome Wide Characterization, Comparative and Genetic Diversity Analysis of Simple Sequence Repeats in Cucurbita Species. Horticulturae. 2021;7(6):143.

138. Ravi M., Chan S.W.L. Haploid plants produced by centromeremediated genome elimination. Nature. 2010;464(7288):615–618.


Рецензия

Для цитирования:


Домблидес Е.А., Ермолаев Е.А., Белов С.Н. Получение удвоенных гаплоидов Cucurbita pepo L. Овощи России. 2021;(4):11-26. https://doi.org/10.18619/2072-9146-2021-4-11-26

For citation:


Domblides E.A., Ermolaev A.S., Belov S.N. Obtaining doubled haploids of Cucurbita pepo L. Vegetable crops of Russia. 2021;(4):11-26. (In Russ.) https://doi.org/10.18619/2072-9146-2021-4-11-26

Просмотров: 1381


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-9146 (Print)
ISSN 2618-7132 (Online)