TEMPERATURE STRESS AND THERMO DORMANCY OF VEGETABLE SEEDS OF UMBELLIFERAE CROPS. FEATURES OF INDUCTION, MANIFESTATION AND OVERCOME
https://doi.org/10.18619/2072-9146-2013-2-36-41
Abstract
The high-temperature stress during 5-20 days has a negative impact on activity of growth of embryo and inhibits the seeds germination of the Umbelliferae crops. The germination of the studied seeds of different species at low temperature contributes to the recovery of the embryo growth; however, growth is less intensive in comparison with the control. All studied Umbelliferae crops showed the differences in seed germination and development of embryos at various tempera6 tures and duration of heat treatment.
About the Authors
A. F. BuharovRussian Federation
D. N. Baleev
Russian Federation
References
1. Балеев Д. Н., Бухаров А. Ф. Аллелопатия овощных зонтичных (Umbelliferae). Торможение прорастания и индукция состояния покоя семян. – Saarbrcken: LAP Lambert Academic Publishing GmbH & Co. KG, 2012. 128 с.
2. Балеев Д. Н., Бухаров А. Ф. Специфика прорастания семян овощных зонтичных культур при различных температурных режимах // Овощи России, 2012. №3 (16). С. 38 – 46.
3. Доспехов Б. А. Методика полевого опыта. – М.: Агропромиздат, 1985. 351 с.
4. Кошкин Е. И. Физиология устойчивости сельскохозяйственных культур. – М.: Дрофа, 2010. 638 с.
5. Леманн Е., Айхеле Ф. Физиология прорастания семян злаков // пер. с нем. В. А. Бриллиант, М. Ф. Лилиенштерн. – М.: Сельхозгиз, 1936. 489 с.
6. Alonso6Blanco C., Bentsink L., Hanhart C.J., Blankestijnde Vries H., Kornneef M. Analysis of natural variation at seed dormancy loci of Arabidopsis thaliana // Genetics, 2003. Vol. 164. pp. 711 – 729.
7. Baskin J.M., Baskin C.C. A classification system for seed dormancy // Seed Science Research, 2004. Vol. 14. pp. 1 – 16.
8. Bentsink L., Hanson J., Hanhart C.J. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways // Proceedings of the National Academy of Sciences of the United States of America, 2010. Vol. 107. pp. 4264 – 4269.
9. Bentsink L., Jowett J., Hanhart C.J., Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis // Proceedings of the National Academy of Sciences of the United States of America, 2006. Vol. 103. pp. 1742 – 1747.
10. Berges J. A., Varela D. E., Harrison P. J. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae) // Mar. Ecol. Prog. Ser., 2002. Vol. 225. pp. 139 – 146.
11. Chiwocha D. S. Karrikins: a new family of plant growth regulators in smoke // Plant Sci., 2009. Vol. 177. pp. 252 – 256.
12. Endo A., Tatematsu K., Hanada K. Tissue6specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds // Plant and Cell Physiology, 2012. Vol. 53. pp. 16 – 27.
13. Finch6Savage W. E., Leubner6Metzger G. Seed dormancy and the control of germination // New Phytologist, 2006. Vol. 171. pp. 501 – 523.
14. Finkelstein R., Reeves W., Ariizumi T., Steber C. Molecular aspects of seed dormancy // Annual Review of Plant Biology, 2008. Vol. 59. pp. 387 – 415.
15. Flintham J. E. Different genetic components control coat6imposed and embryo6imposed dormancy in wheat // Seed Sci. Res., 2000. Vol. 10. pp. 43 – 50.
16. Gu X.Y., Chen Z.X., Foley M.E. Inheritance of seed dormancy in weedy rice // Crop Science, 2003. Vol. 43. pp. 835 – 843.
17. Gubler F., Millar A. A., Jacobsen J. V. Dormancy release, ABA and pre6harvest sprouting // Curr. Opin. Plant Biol., 2005. Vol. 8. pp. 183 – 187.
18. Holdsworth M.J., Bentsink L., Soppe W.J.J. Molecular networks regulating Arabidopsis seed maturation, after6ripening, dormancy and germination // New Phytologist, 2008. Vol. 179. pp. 33 – 54.
19. Kendall S.L., Hellwege A., Marriot P., Whalley C., Graham I.A., Penfield S. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors // The Plant Cell, 2011. Vol. 23. pp. 2568 – 2580.
20. Kilian B., Ozkan H., Pozzi C., Salamini F. Domestication of the Triticeae in the fertile crescent. In Genetics and Genomics of the Triticeae // In: Plant Genetics and Genomics: Crops and Models. – New York: Springer Science + Business Media, 2009. pp. 81 – 119.
21. Li Y.6C., Ren J.6P., Cho M.6J., Zhou S.6M., Kim Y.6B. The level of expression of thioredoxin is linked to fundamental properties and applications of wheat seeds // Mol. Plant, 2009. Vol. 2. pp. 430 – 441.
22. Linkies A., Leubner6Metzger G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination // Plant Cell Reports, 2012. Vol. 31. pp. 253 – 270.
23. Linkies A., Moller K., Morris K. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana // The Plant Cell, 2009. Vol. 21. pp. 3803 – 3822.
24. Oh E., Kang H., Yamaguchi S., Park J., Lee D., Kamiya Y., Choi G. Genome6wide analysis of genes targeted by Phytochrome Interacting Factor 36LIKE5 during seed germination in Arabidopsis // The Plant Cell, 2009. Vol. 21. pp. 403 – 419.
25. Oracz K., Voegele A., Tarkowska D., Jacquemoud D. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture // Plant and Cell Physiology, 2012. Vol. 53. pp. 81 – 95.
26. Penfield S., Josse E.6M., Kannangara R., Gilday A.D., Halliday K.J., Graham I.A. Cold and light control seed germination through the bHLH transcription factor SPATULA // Current Biology, 2005. Vol. 15. pp. 1998 – 2006.
27. Sabelli P. A., Larkins B. A. The development of endosperm in grasses // Plant Physiol., 2009. Vol. 149. pp. 14 – 26.
28. Shahpiri A., Svensson B., Finnie C. From proteomics to structural studies of cytosolic/mitochondrial-type thioredoxin systems in barley seeds // Mol. Plant, 2009, Vol. 2. pp. 378 – 389.
29. Sugimoto K.,Takeuchi Y., Ebana K. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice // Proceedings of the National Academy of Sciences of the United States of America, 2010. Vol. 107. pp. 5792 – 5797.
30. Utsugi S., Nakamura S., Noda K., Maekawa M. Structural and functional properties of Viviparous genes in dormant wheat // Genes. Genet. Syst., 2008. Vol. 83. pp. 153 – 166.
31. Walker – Simmons M. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars // Plant Physiol., 1987. Vol. 84. pp. 61 – 66.
32. Warner R. L., Kudrna D. A., Spaeth S. C., Jones S. S. Dormancy in wheat6grain mutants of Chinese spring wheat (Triticum aestivumL.) // Grain Sci. Res., 2000. Vol. 10. pp. 51 – 60.
33. Xie X., Yoneyama K., Yoneyama K. The strigolactone story // Annu. Rev. Phytopathol, 2010. Vol. 48. pp. 93 – 117.
Review
For citations:
Buharov A.F., Baleev D.N. TEMPERATURE STRESS AND THERMO DORMANCY OF VEGETABLE SEEDS OF UMBELLIFERAE CROPS. FEATURES OF INDUCTION, MANIFESTATION AND OVERCOME. Vegetable crops of Russia. 2013;(2):36-41. (In Russ.) https://doi.org/10.18619/2072-9146-2013-2-36-41