Effect of high-voltage power lines electromagnetic field on growth and development of green bean (Phaseolus vulgaris L.)
https://doi.org/10.18619/2072-9146-2021-2-51-61
Abstract
Relevance. High voltage electric power transmission lines (HVEPTL) cover a fairly large area of agricultural land all over the world. Investigations of electromagnetic field effect on growth and development of plants are held in various countries. The reaction of individual plant species and even varieties to the electromagnetic field manifests itself in different ways. The network of HVEPTL is growing steadily in our region as well. Nevertheless, information about the effect of the electromagnetic field on bean plants is rather scares. The aim of the present work was to evaluate HVEPTL effect on the growth and development of vegetable beans, depending on the intensity of the electromagnetic field.
Material and Methods. The work was achieved on green beans Phaseolus vulgaris L. (Sakfit, Pagoda, MBZ 556, Arishka cvs) grown in conditions of different electromagnetic field values under HVEPTL. Biometrical parameters, plant productivity, yield, dry matter, photosynthetic pigments content, ascorbic acid, total antioxidant activity and total phenolics were determined.
Results. In the ranges of electric field values from (5-10) to (400-440) B/m and magnetic field from 0 to 0.53 μT a beneficial effect of electromagnetic field on accumulation of leaves photosynthetic pigments (15-65% increase of chlorophyll а and 6-52% increase of chlorophyll b), polyphenol content (increase up to 17%), antioxidant activity (1-15% increase), and dry matter content (2,5-11% increase) and beans ascorbic acid levels (12-28% increase) were registered. Accordingy, increased plants growth, development and productivity were demonstrated. Peculiarities of beans plants grown under HVEPTL included decrease leaves carotene levels at electric field level of 60-100 B/m (70 m form HVEPTL), and lack of correlation between chlorophyll and carotene in leaves and total antioxidant activity and phenolics content at the stage of technical ripening.
About the Authors
I. M. KaigorodovaRussian Federation
Cand. Sci. (Agriculture), Senior Researcher,
14, Selektsionnaya str., Odintsovo district, Moscow region, 143072
N. A. Golubkina
Russian Federation
Doc. Sci. (Agriculture), Chief Researcher Laboratory Analytical Department,
14, Selektsionnaya str., Odintsovo district, Moscow region, 143072
U. D. Plotnikova
Russian Federation
Researcher-assistant, Laboratory Analytical Department,
14, Selektsionnaya str., Odintsovo district, Moscow region, 143072
V. A. Ushakov
Russian Federation
Cand. Sci. (Agriculture), Senior Researcher,
14, Selektsionnaya str., Odintsovo district, Moscow region, 143072
A. A. Antoshkin
Russian Federation
Cand. Sci. (Agriculture), Senior Researcher,
14, Selektsionnaya str., Odintsovo district, Moscow region, 143072
References
1. Kudryashov, Y.B., Petrov Y.F., Rubin A.B. Radiation biophysics: radio frequency and microwave electromagnetic radiation. Textbook for universities. M .: FIZMAT LIT. 2008:184. (In Russ.)
2. Spodobaev, Y.M., Kubanov V.P. Fundamentals of electromagnetic ecology. M.: Radio and communication. 2000;240. (In Russ.)
3. Nyakane N.E., Markus E.D., Sedibe M.M. The effects of magnetic fields on plants growth: A Comprehensive Review. International Journal of food engineering. 2019;5(1):79-87. DOI: 10.18178/ijfe.5.1.79-87.
4. Fokin, A.D., Lurie A.A., Torshin S.P. Agricultural radiology. M.: Drofa. 2005. 367 p. (In Russ.)
5. Pietruszewski S., Wоjcik S. Effect of magnetic field on yield and chemical composition of sugar beet roots. International Agrophysics. 2000;(14):89-92.
6. Rochalska M. Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika. 2005;(50):25-28.
7. Pietruszewski S., Martinez E. Magnetic field as a method of improving the quality of sowing material: a review. International Agrophysics. 2015;(29):377–389. DOI: 10.1515/intag-2015-0044.
8. Florez M., Carbonell M.V., Martinez E. Exposure of maize seeds to stationary magnetic fields: effects on germination and early growth. Environmental and experimental botany. 2007;(59):68-75. DOI: 10.1016/j.envexpbot.2005.10.006.
9. Martinez E., Carbonell M.V., Florez H., Amaya J.M., Makoeda R. Germination of tomato seeds (Lycopersicon esculantum L.) under magnetic fields. International Agrophysics. 2009;(23):44-50.
10. Zepeda-Bautista R., Hernandez-Aguilar C., Suazo-Lopez F., DominguezPacheco A.F., Virgen-Vargas J., Perez-Reyes C., Peon-Escalante I. Electromagnetic field in corn grain production and health. African journal of biotechnology. 2014;13(1):76-83. DOI: 10.5897/AJB2013.13245.
11. Pivovarov V.F., Dobrutskaya E.G., Soldatenko A.V., Ushakova O.V., Saprykin A.E., Krivenkov L.V. Method to reduce content of radionuclides and heavy metals in plant produce by means of pre-sowing treatment of seeds. Patent for invention RU No. 2412576 C2. 2011; 6. (In Russ.)
12. Soja G., Kunsch B., Gerzabek M., Reichenauer T., Soja A.-M., Rippar G., Bolhar Nordenkampf H.R. Growth and yield of winter wheat (Triticum aestivum) and corn (Zea mays) near a high voltage transmission line. Bioelectromagnetics. 2003;(24):91-102. DOI: 10.1002/bem.10069.
13. Dardeniz A., Tayyar S., Yalcin S. Influence of low - frequency electromagnetic field on the vegetative growth of grape CV. USLU. Central European Agriculture Journal. 2006;(7):389-396.
14. Demir Z. Proximity effects of high voltage electric power transmission lines on ornamental plant growth. African Journal Biotechnology. 2010;(9):6486-6491. DOI: 10.5897/AJB10.124.
15. Pandey S.K., Singh H., Hasan G.T. A simple сost-effective method for leaf area estimation. Journal of Botany. 2011;(17):1-6. DOI: 10.1155/2011/658240.
16. Bhattacharya R., Barman P. Application of magnetic field on the early growth of Cicer arietinum seeds. International journal of physics. 2011;(4):1-9.
17. Meliha M., Gemici H.D., Gemici, Y. Effects of electromagnetic fields produced by high voltage transmission on physiology of Juglans regia L. and Cerasus avium L. Journal of faculty of agriculture. 2013;50(2):129-135.
18. Majd A., Arbabian S., Dorranian D., Hashemi M. Study of effects of electromagnetic fields on seeds germination, seedlings ontogeny, changes in protein content and catalase enzyme in Valeriana officinalis L. Advances in Environmental Biology. 2013;(9):2235-2240.
19. Bhattacharya R., Barman P. 132 KV high voltage power transmission line and stress on brassica juncea. International journal of electronics and communication technology. 2013;4 (1):140-142.
20. Barman P., Bhattacharya R. Impact of 400 KV high tension line on Saccharum officinarum (sugarcane), A preliminary observation. International journal of innovative research in science and technology. 2014;3(2):296-299.
21. Novichkova, E.A. Podkovkin, V.G., Maslov M.Y. Some aspects of winter wheat vegetation in the area of electromagnetic field action in the Samara region. Bulletin of SamSU, Natural Science Series. 2010;2(76):203-215. (In Russ.)
22. Broughton W.J., Hernandez G., Blair M., Beebe S., Gepts P., Vanderleyden J. Beans (Phaseolus spp.) – model food legumes. Plant and Soil. 2003;(252):55-128. DOI: 10.1023/A:1024146710611.
23. Antoshkin A.A., Miroshnikova M.P., Pronina E.P., Goncharov S.V. Specifics of agricultural technology of green bean. Vegetables breeding and seed production. 2009;(43):35-38. (In Russ.)
24. Kiatgamjorn P., Tarateeraseth V., Khanngern W., Nitta S. The effect of electric field intensity on bean sprout growing. Conference: Environmental electromagnetics. Proceedings. Asia-Pacific Conference on. December. 2003;461-467. DOI: 10.1109/CEEM.2003.1282264.
25. Odhiambo O.J., Ndiritu G.F., Wagara N.I. The influence of AC electromagnetic fields on the initial radicle growth rate of Phaseolus vulgaris L. Journal of applied biosciences. 2009;(22):1350-1358.
26. Podlesna A., Bojarszczuk J, Podlesny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in faba bean (Vicia faba L. spp. Minor). Journal of plant growth regulation. 2019;(38):153-1160. DOI: 10.1007/s00344-019-09920-1.
27. Vian A., Davies E., Gendraud M., Bonnet P. Plant responses to high frequency elec- tromagnetic fields. BioMed Research International, Hindawi Publishing Corporation. 2016;1-14. DOI: 10.1155/2016/1830262.
28. Schmiedchen К., Petri A., Driessen S., Bailey W. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants. Environmental Research. 2018;(160):60-76. DOI:10.1016/j.envres.2017.09.013.
29. Guidelines for selection and primary seed production of vegetable legumes. М.: VNIISSOK; ed. E.V. Mamaev. 1985. 60 p. (In Russ.)
30. Belik, V.F., Rubin V.F., Lukyanenko D.E. The method of field experiment in vegetable growing and melon growing. M.: NIIOH. 1979; 210 p. (In Russ.)
31. Lichtenthaler, H.K. Chlorophylls and Carotenoids: рigments of рhotosynthetic вiomembranes. Methods in еnzymology. 1987;(148):350-382.
32. Golubkina N.A., Kekina E.G., Molchanova A.V. Antoshkina M.S., Nadezkin S.M., Soldatenko A.V. Antioxidants of plants and methods of their definition. M.: INFRAM. 2020.181 p. (In Russ.)
33. Dospekhov, B.A. Field experiment technique. M.: Agropromizdat. 1985. 351 p. (In Russ.)
34. Barman P., Bhattacharya R. Survey on the potential impact of high voltage transmission lines on the growth characteristics of plants. International journal of environmental sciences. 2015;6(2):219-224. DOI: 10.6088/ijes.6024.
35. Domash V.I., Kandelinskaya O.L., Ivanov O.A., Grischenko E.R., Sharpio T.P., Zabreiko S.A. The role of the proteolysis system and lectins in the mechanisms of adaptation of cultivated and wild-growing plants to the action of electromagnetic radiation from power lines. Mechanisms of resistance of plants and microorganisms to unfavorable environmental conditions. Annual meeting of the Society of Plant Physiologists of Russia. 2018;(II):1052-1054. DOI: 10.31255/978-5-94797-319-8-1052-1054. (In Russ.)
36. Mahmood M., Bee O.B., Mohamed M.T., Subramaniam S. Effects of electromagnetic field on the nitrogen, protein and chlorophyll content and peroxidase enzyme activity in oil palm (Elaeis guineensis Jacq.). Emirates Journal of Food and Agriculture. 2012;25(6). DOI: 10.9755/ejfa.v25i6.15583.
37. Temichev A.V., Golubkina N.A., Startsev V.I. Biochemical characteristics of East-Asian species of Brassica L. Gavrish. 2004;(2):14-18. (In Russ.)
38. Michurina N.Y. Ecological and biochemical analysis of winter wheat variability in the zone of influence of power transmission lines in the conditions of the Srednego Povolzhya. Abstract of the thesis diss. agr. sci. 03.00.16 and 03.00.04. 2005. 18 p. (In Russ.)
39. Golubkina N.A., Kharchenko V.A., Moldovan A.I., Koshevarov A.A., Zamana S., Nadezhkin S., Soldatenko A., Sekara A., Tallarita A., Caruso G. Yield, growth, quality, biochemical characteristics and elemental composition of plant parts of celery leafy, stalk and root types grown in the northern hemisphere. Plants. 2020;(9):484; DOI:10.3390/plants9040484.
40. http: //hdl.handle.net/11701/2237.
Review
For citations:
Kaigorodova I.M., Golubkina N.A., Plotnikova U.D., Ushakov V.A., Antoshkin A.A. Effect of high-voltage power lines electromagnetic field on growth and development of green bean (Phaseolus vulgaris L.). Vegetable crops of Russia. 2021;(2):51-61. (In Russ.) https://doi.org/10.18619/2072-9146-2021-2-51-61