Biofortification of chervil with selenium
https://doi.org/10.18619/2072-9146-2021-1-79-86
Abstract
Relevance. Production of functional food with high levels of antioxidant status and selenium is essential for human protection against viral and cardiovascular diseases as well as cancer.
Methods. Evaluation of the efficiency in foliar sodium selenate biofortification (25. 50 and 75 mg Se/L) was achieved on three chervil genotypes.
Results. Intervarietal differences in biofortification level was demonstrated: from 15.5 to 31.1 for 25 mg Se/L dose; from 36.9 to 64.6 for 50 mg Se/L dose; and from 72.9 to 130 for 75 mg Se/L dose. At the chosen doses, selenium supply did not affect significantly the yield, antioxidant properties and photosynthetic content of chervil. Total antioxidant activity was in the range from 30 to 42 mg GAE/g d.w., phenolics content from 9 to 13 mg GAE/g d.w, flavonoids from 5 to 12 mg-eq quercetin/g d.w., ascorbic acid from 33 to 66 mg/100 g fresh w. High levels of carotene were a typical feature of Se fortified and non-fortified chervil. A direct correlation was recorded between phenolics content and total antioxidant activity (r=+0.954, P<0.01), and between water soluble compounds and nitrates accumulation (r=+0.920, P<0.01). Biofortification with selenium did not affect significantly the mineral content of plants. Consumption of 100 g of fresh chervil leaves, fortified with selenium, provides from 50 to 75% of the adequate selenium consumption level and from 16 to 20% of potassium. Taking into account that both selenium and potassium normalize heart activity, the new functional food product may be recommended for prophylactics and treatment of cardiovascular diseases and for the human selenium status optimization.
About the Authors
V. A. KharchenkoRussian Federation
Viktor A. Kharchenko – Cand. Sci. (Agriculture), Head of Laboratory of Selection And Seed Production Of Green, Spice-Flavoring and Flower Crops
14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072
N. A. Golubkina
Russian Federation
Nadezhda A. Golubkina – Doc. Sci. (Agriculture), Chief Researcher Laboratory Analytical Department
14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072
A. I. Moldovan
Russian Federation
Anastasia I. Moldovan – Graduate Student, junior researcher, laboratory of Selection And Seed Production Of Green, Spice-Flavoring and Flower Crops
14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, 143072
G. Caruso
Italy
Gianluca Caruso – prof.
80055 Portici, Naples
References
1. Golubkina N.A., Papazyan T.T. Selenium in nutrition. Plants, animals, man. M., Printing town. 2006. (In Russ.)
2. Golubkina N.A., Sindireva A.V., Zaitsev V.F. Intraregional variability of the selenium status of the population of Russia. South of Russia. Ecology and development. 2017;12(1):107-127. (In Russ.)
3. Golubkina N.A. Plant antioxidants and methods for their determination. M., Infra-M. 2020. (In Russ.)
4. Golubkina, N.A., Nadezhkin, S.M., Loseva, T.A., Sokolova, A.J. Global ecological crisis. Problems and decisions. Moscow, VNIISSOK. 2012 (in Russ.)
5. “Feeds. Methods for determination of dry matter content”.
6. Kovalsky Yu.G., Golubkina N.A., Papazyan T.T., Senkevich O.A. Selenium status of residents of the Khabarovsk Territory. Trace elements in medicine. 2019;20(3):45-53. (In Russ.)
7. Molchanova A.V., Golubkina N.A., Koshevarov A.A., Kharchenko V.A., Shevchenko J.P. Biochemical characteristics of parsley varieties (Petroselinum crispum [Mill.] Nym. ex A.W. Hill.). Vegetable crops of Russia. 2019;(3):74-79. (In Russ.) https://doi.org/10.18619/2072-9146-2019-3-74-79]
8. Kharchenko V.A., Moldovan A.I., Golubkina N.A., Gins M.S., Shafigullin D.R. Comparative evaluation of several biologically active compounds content in Anthriscus sylvestris (L.) Hoffm. and Anthriscus cerefolium (L.) Hoffm. Vegetable crops of Russia. 2020;(5):81- 87. (In Russ.) https://doi.org/10.18619/2072-9146-2020-5-81-87
9. Ahmad BS, Talou T, Saad Z, Hijazi A, Merah O. The Apiaceae:Ethnomedicinal family as source for industrial uses. Industrial Crops and Products, Elsevier. 2017;(109):661-671. DOI: 10.1016/j.indcrop.2017.09.027.hal-01607960
10. Aćimović M.G. Nutraceutical Potential of Apiaceae. In: Mérillon JM., Ramawat K. (eds) Bioactive Molecules in Food. 2017. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_17-1
11. Chojnacka, K., Witek-Krowiak, A., Skrzypczak, D., Mikula, K., Młynarz, P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J. Funct. Food. 2020;(73):104146. doi: 101015/j.jff.2020.104146
12. Garg S.K Role and hormonal regulation of nitrate reductase activity in higher plants. A review. Plant Sci. Feed. 2013;(3):13-20.
13. Golubkina N.A., Kosheleva O.V., Krivenkov L.V., Dobrutskaya H.G., Nadezhkin S., Caruso G. Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Sci.Hort. 2017;(2250):350-358.
14. Haq, F.U., Roman, M., Ahmad, K., Rahman, S.U., Shah, S.M.A., Suleman, N., Ullah, S., Ahmad, I., Ullah, W. Artemisia annua: Trials are needed for COVID-19. Phytother. Res. 2020;(1–2). DOI: 10.1002/ptr.6733.
15. Harthill, M. Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem. Res. 2011;143(3):1325–1336. https://doi.org/10.1007/s12011-011-8977-1.
16. Jones, G.D., Droz, B., Greve, P., Gottschalk, P., Poet, D., McGrath, S.P. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA. 2017;(114):2848–2853.
17. Kieliszek, M., Lipinski, B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med. Hypotheses. 2020;(143):109878.
18. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods of Enzymology. 1987;(148):350-382. doi:10.1016/0076-6879(87)48036-1
19. Nelson, H.K., Shi, Q., Van Dael, P., Schiffrin, E.J., Blum, S., Barclay, D., Levander, O.A., Beck, M.A. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J. 2001;15(10):1846–1848. https://doi.org/10.1096/fj.01-0115fje
20. Pilon-Smits E.A.H. On the ecology of selenium accumulation in plants. Plants. 2019;(8):197. doi: 10.3390/plants8070197
21. Rayman, M.P. Food-chain selenium and human health: Emphasis on intake. The Brit. J. Nutr. 2008;100(2):254-268. DOI: 10.1017/S0007114508939830
22. Rios J.J., Blasco B., Rosales M.A., Sanchez-Rodriguez E., Leyva L., Cervilla L.M., Romera L, Ruiz J.M. Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. JK.Sci Food Agric. 2010;(90):1914-1919.
23. Saffariadzi A, Lahouti M, Ganjeali A, Bayat H Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleraceae) plants. Not.Sci.Biol. 2012;(4):95-100.
24. Steinbrenner H., Al-Quraishy S., Dkhil M.A., Wunderlich F., Sies H. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections. Adv Nutr. 2015;6(1):73–82. doi: 10.3945/an.114.007575
25. Vyas A., Shukla S.S., Pandey P., Jain V., Joshi V., Gidwani B. Chervil: A multifunctional Miraculous Nutritional Herb. Asian J. Plant Sci. 2012;11(4):163-171. doi:10.3223/ajps.2012.163.171
26. Zhang, L., Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Vir. 2020a;(92):479–490. https://doi.org/10.1002/jmv.2570
27. Zhang, J., Taylor, E.W., Bennett, K., Saad, R., Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr.2020b;111(6):1297–1299. https://doi.org/10.1093/ajcn/nqaa095.
Review
For citations:
Kharchenko V.A., Golubkina N.A., Moldovan A.I., Caruso G. Biofortification of chervil with selenium. Vegetable crops of Russia. 2021;(1):79-86. (In Russ.) https://doi.org/10.18619/2072-9146-2021-1-79-86