Complex biochemical characteristics of broccoli and cauliflower
https://doi.org/10.18619/2072-9146-2020-6-104-111
Abstract
Relevance. A commonly cultivated and demanded type of vegetable crops – cabbage Brassica oleracea L. – in the process of evolution and domestication was divided into three clusters: leafy cabbage, headed cabbage and broccoli (cauliflower). According to modern data, Broccoli was developed by hybridization from collard greens and is the genetic precursor to cauliflower. Broccoli and cauliflower have a valuable biochemical composition and are recommended for daily consumption. The characteristic of cultures of Brassica oleracea L. (broccoli and cauliflower) is given according to the most important biochemical quality characteristics.
Material and methods. The research material included 30 accessions of broccoli and 35 accessions of cauliflower from the VIR collection, reflecting the ecological, geographical and genetic diversity. Accessions were grown at the research and production base "Pushkin and Pavlovsk Laboratories VIR" (St. Petersburg), biochemical analysis was carried out in the laboratory of biochemistry and molecular biology VIR using gas chromatography/mass spectrometry.
Results. The characterization of Brassica oleracea L. species (broccoli and cauliflower) is given according to the main most important biochemical quality characteristics. As a result of using of the modern gas chromatography/mass spectrometry approach to the study of the biochemical composition in samples of broccoli and cauliflower, about 136 components have been identified from the groups of organic acids, free amino acids, including essential, fatty acids, including essential, polyhydric alcohols, sugars, and also phenolic compounds, nucleosides, and others. Regularity in the accumulation of nutrient and biologically active substances by cultures of Brassica oleracea L., by cultivar types and individual samples were revealed. As a result of our research using modern techniques new data on the biochemical composition of broccoli and cauliflower were obtained. B.oleracea within the studied botanical varieties and cultivar types has a complex biochemical composition that characterizes them as accessions with potentially high value, which confirms the need for indepth control of the biochemical composition of plants when breeding new varieties. Accessions with the optimal component composition for balanced human nutrition, which are proposed to be used in breeding for quality, including obtaining varieties for healthy (functional) and therapeutic and prophylactic nutrition of the population of the Russian Federation were found.
Keywords
About the Authors
D. A. FateevRussian Federation
Dmitrii A. Fateev – Researcher
St. Petersburg
A. E. Solovyeva
Russian Federation
Alla E. Solovyeva – Cand. Sci. (Biology), Senior Researcher
St. Petersburg
T. V. Shelenga
Russian Federation
Tatiana V. Shelenga – Cand. Sci. (Biology), Senior Researcher
St. Petersburg
A. M. Artemyeva
Russian Federation
Anna M. Artemyeva – Cand. Sci. (Agriculture), Lieder Researcher
St. Petersburg
References
1. A proceeding of the XXVI International Horticultural Congress, Toronto, Canada, 11-17 August, 2002: viticulture - living with limitations.
2. Артемьева А.М., Соловьева А.Е. Генетическое разнообразие и биохимическая ценность капустных овощных растений рода Brassica L. Вестник новосибирского государственного аграрного университета. 2018;49(4):50- 61). doi: 10.31677/2072-6724-2018-49-4-50-61 [Аrtemyeva A.M., Solovieva A.E. Genetic diversity and biochemical value of Brassica L. cabbage plants. Bulletin of NSAU (Novosibirsk State Agrarian University). 2018;49(4):50-61. (in Russian) doi: 10.31677/2072-6724-2018-49-4-50-61]
3. Singh J., Rai M., Upadhyay A.K., Bahadur A., Chaurasia S.N., Singh, K. Antioxidant phytochemicals in broccoli (Brassica oleracea L. var. italica Plenck) cultivars. Journal of Food Science and Technology.Mysore. 2006;43: 391-393.
4. Basten G.P., Bao Y., Williamson G. Sulforaphane and its glutathione conjugate but not sulforaphane nitrile induce UDP-glucuronosyl transferase (UGT1A1) and glutathione transferase (GSTA1) in cultured cells. Carcinogenesis. 2002;(23):1399–1404
5. Verhoeven D., Goldbohm R.A., van Poppel Geert, Verhagen Hans, Brandt P.A. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers. 5:733-748.
6. Michaud D.S., Spiegelman D., Clinton S.K., Rimm E.B., Curhan G.C., Willett W.C., Giovannucci E.L. Fluid intake and the risk of bladder cancer in men. N. Engl. J. Med. 1999;(340):1390–1397.
7. Yochum L., Kushi L.H., Meyer K., Folsom A.R. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemiol. 1999;(149):943–949.
8. Raiola A., Errico A., Petruk G., Monti D.M., Barone A., Rigano M.M. Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases. Molecules. 2017;23(1):15. doi:10.3390/molecules23010015
9. Lippmann D., Lehmann C., Florian S., Barknowitz G., Haack M., Mewis I., Wiesner M., Schreiner M., Glatt H., Brigelius-Flohé R. Glucosinolates from pakchoi and broccoli induce enzymes and inhibit inflammation and colon cancer differently. Food Funct. 2014;(5):1073–1081. doi: 10.1039/C3FO60676G.
10. Dos Reis L.C.R., Oliveira V.R., Hagen M.E.K., Jablonski A., Flores S.H., de Oliveira Rios A. Carotenoids, flavonoids, chlorophylls, phenolic compounds and antioxidant activity in fresh and cooked broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1). LWT Food Sci. Technol. 2015;(63):177–183. doi: 10.1016/j.lwt.2015.03.089.
11. Ловкова М.Я., Рабинович А.М., Пономарева С.М., Бузук Г.Н., Соколова С.М. Почему растения лечат. М., 1990. [Lovkova M.Y., Rabinovich A.M., Ponomareva S.M., Buzuk G.N., Sokolova S.M. Why are plants treated? М., 1990. (In Russian)]
12. Jahangir M., H. K. Kim, Y. H. Choi, R. Verpoorte. Health-Affecting Compounds in Brassicaceae. Food Sci. and Food Saf. 2009;8(2):31–43. doi: 10.1111/j.1541-4337.2008.00065.x
13. Tribulato A., Branca F., Ragusa L., Lo Scalzo R., Picchi V. Survey of Health-Promoting Compounds in Seeds and Sprouts of Brassicaceae. Acta Hortic. 2013;(1005):323-330. DOI: 10.17660/ActaHortic.2013.1005.37
14. Novío S.,Cartea M. E.,Soengas P.,Freire-Garabal M., Núñez-Iglesias M. J. Effects of Brassicaceae Isothiocyanates on Prostate Cancer. Molecules. 2016;21(5),626. doi:10.3390/molecules21050626.
15. Лоскутов И.Г., Шеленга Т.В., Конарев А.В., Шаварда А.Л., Блинова Е.В., Дзюбенко Н.И Метаболомный подход к сравнительному анализу диких и культурных видов овса (Avena L.). Вавиловский журнал генетики и селекции. 2016;20(5):636-642. doi: 10.18699/VJ16.185 [N.I. Тhe metabolomic approach to the comparative analysis of wild and cultivated species of oats (Аvena L.). Russian Journal of Genetics: Applied Research. 2016;20(5):636-642. (in Russian) doi: 10.18699/VJ16.185]
16. Конарев А.В., Шеленга Т.В., Перчук И.Н., Блинова Е.В., Лоскутов И.Г. Характеристика разнообразия овса (Avena L.) из коллекции ВИР – исходного материала для селекции на устойчивость к фузариозу. Аграрная Россия. 2015;(5):2-10. [Konarev A.V., Shelenga T.V., Perchuk I.N., Blinova E.V., Loskutov I.G. Characteristic of Oat Diversity (genus Avena L.) from the Collection of N. I. Vavilov All-Russia Research Institute of Plants - an Initial Material for Oat Fusarium Resistance Selection. Agrar. Ross. 2015;(5):2-10. (in Russian)]
17. Puzanskiy R.K., Shavarda A.L., Tarakhovskaya E.R., Shishova M.F. Analysis of metabolic profile of Chlamydomonas reinhardtii cultivated under autotrophic conditions. Appl. Biochem. Microbiol. 2015;51(1):83-94. doi.org/10.1134/S0003683815010135.
18. Annunziata M.G., Carillo P., Fuggi A., Troccoli A., Woodrow P. Metabolic profiling of cauliflower under traditional and reduced tillage systems. Australian Journal of Crop Science. 2013:(7):1317-1323.
19. Park S.Y, Lim S.H., Ha S.H., Yeo Y., Park W.T., Kwon D.Y., Park S.U., Kim J.K. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis). J Agric Food Chem. 2013 Jul 17;61(28):6999-7007. doi: 10.1021/jf401330e
20. Capriotti, A. L., Cavaliere C., La Barbera G., Montone C.M., Piovesana S., Zenezini Chiozzi R., Laganà A.. Сhromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry. Talanta 2018;(179):792-802.
21. Revelou P.K., Kokotou M.G., Constantinou-Kokotou V. Identification of Auxin Metabolites in Brassicaceae by Ultra-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Molecules (Basel, Switzerland). 2019;24(14). doi: 10.3390/molecules24142615.
22. Ермаков А.И., Арасимович В.В., Ярош Н.П. Методы биохимического исследования растений. Л., 1987. [Ermakov A. I., Arasimovich V. V., Jarosh N. P. et. al. Metods of biochemical research in plants. (Metody biohimicheskogo issledovanija rastenij). Leningrad, 1987. (In Russian)]
23. Смоликова Г.Н., Шаварда А.Л., Алексейчук И.В., Чанцева В.В., Медведев С.С. Mетаболомный подход к оценке сортовой специфичности семян Brassica napus L. Вавиловский журнал генетики и селекции. 2015;19(1):121-127. [Smolikova G.N., Shavarda A.L., Alekseichuk I.V., Chantseva V.V., Medvedev S.S. The metabolomic approach to the assessment of cultivar specificity of Brassica napus L. seeds. Vavilovskii Zhurnal Genetiki i Selektsii – Vavilov Journal of Genetics and Breeding. 2015;19(1):121-127. (In Russian)]
24. Yao S.Z., Chen P., Yang X.Y., Fung Y.S., Si S.H. Herbal Organic Acids. In Advanced Chromatographic and Electromigration methods in BioSciences, Edited by Deyl Z., Miksik I., Tagliaro F. and Tesarova E. J. of Chromatogr. Library Series. 1998;(60):344-370.
25. Ailia D., Vassiliev A., Jensen J. O., Schmidt T. J., Li Q. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes. J. of Power Sources. 2015;(279):517-521. doi: 10.1016/j.jpowsour.2015.01.010
26. Cañete-Rodríguez A.M., Santos-Dueñas I.M., Jiménez-Hornero J.E., Ehrenreich A., Liebl W., García-García I. Gluconic acid: Properties, production methods and applications–An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochemistry. 2016;51(12):1891-1903. doi.org/10.1016/j.procbio.2016.08.028
27. Teshima, S. In Physiology and Biochemistry of Sterols (G.W. Patterson and W.D. Nes, eds). AOCS, Champaign, IL. 1991. P.229.
Review
For citations:
Fateev D.A., Solovyeva A.E., Shelenga T.V., Artemyeva A.M. Complex biochemical characteristics of broccoli and cauliflower. Vegetable crops of Russia. 2020;(6):104-111. (In Russ.) https://doi.org/10.18619/2072-9146-2020-6-104-111