Conformational variability of DNA double helix
https://doi.org/10.18619/2072-9146-2020-6-51-57
Abstract
Deoxyribonucleic acid (DNA) is one of the main carriers of hereditary information. The structural physicochemical information of DNA ultimately determines the structure and functioning of all living organisms. In DNA, various mutational events accumulate and recombination events occur, which lead to the variability of organisms and are subject to both natural and artificial selection. The interaction "genotype-environment" inherent in all living organisms is also characteristic of DNA, which is located in the intracellular and intranuclear physicochemical environment of water molecules, sugars, metal ions, pH, nucleotides and other components. The establishment and study of the physicochemical properties of native DNA contributes to not only understanding the mechanisms of the structure of the main hereditary biomolecule, but also to clarify their functioning, as well as interaction with other molecules at the molecular level. The discovery of various forms of double helices: A, Aʹ, B, α-Bʹ, β-Bʹ, C, Cʹ, Cʹʹ, D, E and Z suggests the idea of molecular genetic diversity existing at the DNA level and the establishment of their structural and functional features can lead to an understanding of the implementation of genetic information at the general biological level. The structure of natural DNA as a whole, apparently, does not depend on the sequence and nucleotide composition. For natural molecules - satellite DNA with repeats or DNA without repeats, the presence of only A-, B- and C-forms has been confirmed. The structure of DNA depends not only on temperature, but also on the nature of the cations present. The presence of a certain amount of metal ions in the medium can lead to the transition of the B-form of DNA to the Zform. The B ↔ Z transition modifies the general structure of DNA and, therefore, may be important for the regulation of gene expression. The study of the biological role of Z-DNA, possibly in the near future, will help to understand the mechanism of gene expression, primarily of an epigenetic nature, which has not yet been fully elucidated.
About the Author
Yu. V. ChesnokovRussian Federation
Yuriy V. Chesnokov – Doc. Sci. (Biology), Director of Agrophysical Research Institute
14, Grazhdanskiy ave., St.-Petersburg, 195220
References
1. Сивожелезова Н.А., Мишакова В.Н. Значение открытия структуры ДНК для молекулярной генетики и сельского хозяйства. Известия Оренбургского государственного аграрного университета. 2014;(4):164-167. [Sivozhelezova N.A., Mishakova V.N. The significance of the discovery of DNA structure for molecular genetics and agriculture. Bulletin of the Orenburg State Agrarian University. 2014;(4):164-167. (in Russian)]
2. Чесноков Ю.В. Закон гомологических рядов в наследственной изменчивости и молекулярная гомология генов. Сельскохозяйственная биология. 2007;(5):9-14. [Chesnokov Yu.V. Law of homologous series in hereditary variability and molecular homology of genes. Agricultural Biology. 2007;(5):9-14. (in Russian)]
3. Broadhurst L., Breed M., Lowe A., Bragg J., Catullo R., Coates D.J., EnsinasViso F., Gellie N., James E., Krauss S., Potts B., Rossetto M., Shepherd M., Byrne M. Genetic diversity and structure of the Australian flora. Divers. Distrib. 2017;(23):41–52. https://doi.org/10.1111/ddi.12505
4. Coates D.J., Byrne M., Moritz C. Genetic Diversity and Conservation Units: Dealing With the Species-Population Continuum in the Age of Genomics. Front. Ecol. Evol. 2018;(6):165. https://doi.org/10.3389/fevo.2018.00165
5. Leslie A.G.W., Arnott S., Chandrasekaran R., Ratliff R.L. Polymorphism of DNA double helices. J. Mol. Biol. 1980;(143):49-72. https://doi.org/10.1016/0022-2836(80)90124-2
6. Arnott S., Hukins D.W.L. Opimised parameters for a-DNA and B-DNA. Biochem. Biophys. Res. Commun. 1972;(47):1504-1509. https://doi.org/10.1016/0006-291x(72)90243-4
7. Arnott S., Chandrasekaran R. Fibrous polynucleotide duplexes have very polymorphic secondary structures. In Biomolecular stereodynamics (ed. R.H. Sarma). Adenine Press, New York. 1981;(I): 99-122.
8. Marvin D.A., Spencer M., Wilkins M.H.F., Hamilton L.D. The molecular configuration of DNA. III. X-ray diffraction study of the C form of the lithium salt. J. Mol. Biol. 1961;(3):547-565. https://doi.org/10.1016/s0022-2836(61)80021-1
9. Arnott S., Chandrasekaran R., Hukins D.W.L., Smith P.L.C., Watts L. Structural details of a double-helix observed for DNAs containing alternating purine-pyrimidine sequences. J. Mol. Biol. 1974;(88):523-533. https://doi.org/10.1016.0022-2836(74)90499-9
10. Wang A.H.-J., Quigley G.J., Kolpak F.J., Crawford J.L., Boom J.H. van, Marel G van der, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979;(282):680-686. https://doi.org/10.1038/282680a0
11. Ghosh A., Bansal M. A glossary of DNA structures from A to Z. Acta Crystallogr D Biol Crystallogr. 2003;(59):620-626. https://doi.org/10.1107/s0907444903003251
12. Du Y., Zhou X. Targeting non-B-form DNA in living cells. Chem. Rec. 2013;(13):371-384. https://doi.org/10.1002/tcr.201300005
13. Waters J.T., Lu X.-J., Galindo-Murillo R., Gumbart J.C., Kim H.D., Cheatham T.E. III, Harvey S.C. Transitions of Double-Stranded DNA Between the A- and BForms. J. Phys. Chem B. 2016;(120):8449–8456. https://doi.org/10.1021/acs.jpcb.6b02155
14. Bram S. Secondary structure of DNA depends on base composition. Nature New Biol. 1971;(232):174-176. https://doi.org/10.1038/newbio232174a0
15. Bram S., Tougard P. Polymorphism of natural DNA. Nature New Biol. 1972;(239):128-131. https://doi.org/10.1038/newbio239128a0
16. Pilet J., Blicharski J., Brahms J. Conformations and structural transitions in polydeoxynucleotides. Biochemistry. 1975;(14):1869-1876. https://doi.org/10.1016/0022-2836(80)90124-2
17. Gray D.M., Gall J.G., The circular dichroism spectra of three Drosophila virilis satellite DNA’s. J. Mol. Biol. 1974;(85):665-679. https://doi.org/10.1016/S0022-2836(75)80112-4
18. Arnott S. The sequence dependence of circular dichroism spectra of DNA duplexes. Nucl. Acids Res. 1975;(2):1493-1502. https://doi.org/10.1093/nar/2.9.1493
19. Selsing E., Arnott S. Conformations of A-T rich DNA’s. Nucl. Acids Res. 1976;(3):2443-2450. https://doi.org/10.1093/nar/3.10.2443
20. Premilat S., Albiser G. X-ray diffraction study of three DNA fibers with different base composition. J. Mol. Biol. 1975;(99):27-36. https://doi.org/10.1006/viro.2002.1602
21. Klug A., Jack A., Viswamitra M.A., Kennard O., Shakked Z., Steitz T.A. A hypothesis on a specific sequence-dependent conformation of DNA and its relation to the binding of the lac-repressor protein. J. Mol. Biol. 1979;(131):669-680. https://doi.org/10.1016/0022-2836(84)90176-1
22. Pilet J., Brahms J. Dependence of B-A conformational change in DNA on base composition. Nature New Biol. 1972;(236):99-100. https://doi.org/10.1038/newbio236099a0
23. Drew H., Takano T., Tapaka S., Itakura K., Dickerson R.E. High-salt d(CpGpCpG): A left-handed Zʹ DNA double helix. Nature. 1980;(286):567-573. https://doi.org/10.1038/286567a0
24. Svozil D., Kalina J., Omelka M., Schneider B. DNA conformations and their sequence preferences. Nucleic Acids Res. 2008;(36):3690–3706. https://doi.org/10.1093/nar/gkn260
25. Dans P.D., Balaceanu A., Pasi M., Patelli A.S., Petkevičiūtė D., Walther J., Hospital A., Bayarri G., Lavery R., Maddocks J.H., Orozco M. The static and dynamic structural heterogeneities of B-DNA: extending Calladine–Dickerson rules. Nucleic Acids Res. 2019;(47):11090–11102. https://doi.org/10.1093/nar/gkz905
26. Langridge R., Marvin D.A., Seeds W.E., Wilson H.R., Hooper C.W., Wilkins M.H.F., Hamilton L.D. The molecular configuration of deoxyribonucleic acid. II. Molecular models and their Fourier transforms. J. Mol. Biol. 1960;(2):38-64. https://doi.org/10.1016/0022-2836(79)90507-2
27. Marvin D.A., Spencer M., Wilkins M.H.F., Hamilton L.D. The molecular configuration of DNA. III. X-ray diffraction study of the C form of the lithium salt. J. Mol. Biol. 1961;(3):547-565. https://doi.org/10.1016/S0022-2836(61)80021-1
28. Fuller W., Wilkins M.H.F., Wilson H.R., Hamilton L.D. The molecular configuration of deoxyribonucleic acid. IV. X-ray diffraction study of the A-form. J. Mol. Biol. 1965;(12):60-80. https://doi.org/10.1016/s0022-2836(65)80282-0
29. Anderson P., Bauer W. Supercoiling in closed circular DNA: dependence upon ion type and concentration. Biochemistry. 1978;(17):594-601. https://doi.org/10.1021/bi00597a006
30. Chan A., Kilkuskie R., Hanlon S. Correlation between the duplex winding angle and the circular dichroism spectrum of calf thymus DNA. Biochemistry. 1979;(18):84-91. https://doi.org/10.1021/bi00568a013
31. Ivanov V.I., Minchenkova L.E., Schyolkina A.K., Poletayev A.I. Different conformations of double stranded nucleic acids in solution as revealed by circular dichroism. Biopolymers. 1973;(12):89-100 https://doi.org/10.1002/bip.1973.360120109
32. Weiner P.K., Langridge R., Blaney J.M., Schaefer R., Kollman P. Electrostatic potential molecular surfaces. Proc. Natl. Acad. Sci. USA. 1982;(79):3754-3758. https://doi.org/10.1073/pnas.79.12.3754
33. Barone G., Guerra C.F., Bickelhaupt F.M. B-DNA structure and stability as function of nucleic acid composition: Dispersion-corrected DFT study of dinucleoside monophosphate single and double strands. Chemistry Open. 2013;(2):186-193. https://doi.org/10.1002/open.201300019
34. Wang J.C., Jacobsen J.H., Saucier J.-M. Physicochemical studies on interaction between DNA and RNA polymerase. Unwinding of the DNA helix by Escherichia coli RNA polymerase. Nucl. Acids Res. 1977;(4):1225-1241. https://doi.org/10.1093/nar/4.5.1225
35. Dickerson R.E., Drew H.R., Conner B.N., Wing R.M., Fratini A.V., Kopka M.L. The anatomy of A-, B-, and Z-DNA. Science. 1982;(216):475-485. https://doi.org/10.1126/science.7071593
36. Мокульский М.А., Капитонова К.А., Мокульская Т.Д. Вторичная структура ДНК фага Т2. Мол. Биол. 1972;(6):34-38. [Mokulsky M.A., Kapitonova K.A., Mokulskaya T.D. Secondary structure of T2 phage DNA. Mol. Biol. 1972;(6:)34-38. (in Russian)]
37. Arnot S., Selsing E. The conformation of C-DNA. J. Mol. Biol. 1975;(98):265- 269. https://doi.org/10.1016/S0022-2836(75)80115-X
38. Brahms J., Pilet J., Lan T.-T.P., Hill L.R. Direct evidence of the C-like form of sodium deoxyribonucleate. Proc. Natl. Acad. Sci. USA. 1973;(70):3352-3355. https://doi.org/10.1073/pnas.70.12.3352
39. Rhodes N.J., Mahendrasingam A., Pigram W.J., Fuller W., Brahms J., Vergne J.,Warren R.A.J. The C conformation in low salt form of sodium DNA. Nature. 1982;(296):267-269. https://doi.org/10.1038/296267a0
40. Ussery D.W. DNA Structure: A-, B- and Z-DNA helix families. Encyclopedia of Life Sciences. Macmillan Publishers Ltd, Nature Publishing Group. 2002. P.1-7. https://doi.org/10.1038/npg.els.0003122
41. Pohl F.M., Jovin T.M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly d(G-C). J. Mol. Biol. 1972;(67):375-396. https://doi.org/10.1016/0022-2836(72)90457-3
42. Razin A., Riggs A.D. DNA methylation and gene function. Science. 1980;(210):604-610. https://doi.org./10.1126/science.6254144
43. Behe M., Felsenfeld G. Effects on methylation on a synthetic polynucleotide: The B-Z transition in poly(dG-m5C) • poly(dG-m5C). Proc. Natl. Acad. Sci. USA. 1981;(78):1619-1623. https://doi.org/10.1073/pnas.78.3.1619
44. Sande J.H. van de, Jovin T.M. Z*DANN, the left-handed helical from of poly[d(G-C)] in MgCl2-ethanol, is biologically active. EMBO J. 1982;(1):115-120. https://doi.org/10.1002/j.1460-2075.1982.tb01133.x
45. Klysik J., Stirdivant S.M., Larson J.E., Hart P.A., Wells R.D. Left-handed DNA in restriction fragments and a recombinant plasmid. Nature. 1981;(290):672-677. https://doi.org/10.1038/290672a0
46. Singleton C.K., Klysik J., Stirdivant S.M., Wells R.D. Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature. 1982;(299):312- 316. https://doi.org/10.1038/299312a0
47. Santella R.M., Grunberger D., Weinstein I.B., Rich A. Induction of the Z conformation of poly(dG-dC) • poly(dG-dC) by binding of N-2-acetiylaminofluorene to guanine residues. Proc. Natl. Acad. Sci. USA. 1981;(78):1451-1455. https://doi.org/10.1073/pnas.78.3.1451
48. Job D., Marmillot P., Job C., Jovin T.M. Transcription of left-handed Z-DNA templates: increased rate of single-step addition reactions catalyzed by wheat germ RNA polymerase II. Biochemistry. 1988;(27):6371-6378. https://doi.org/10.1021/bi00417a027
49. Ferl R.J., Paul A.L. Chemical detection of Z-DNA within the maize Adh1 promoter. Plant Mol. Biol. 1992;(18):1181-1184. https://doi.org/10.1007/BF00047722
50. Cerna A., Cuadrado A., Jouve N., Diaz dela Espina S.M., De la Torre C. ZDNA, a new in situ marker for transcription. Eur. J. Histochem. 2004;(48):49-56. https://doi.org/10.4081/856
51. Nicol J., Behe M., Felsenfeld G. Effect of the B-Z transition in poly(dG-dm5C) • poly(dG-dm5C) on nucleosome formation. Proc. Natl. Acad. Sci. USA. 1982;(79):1771-1775. https://doi.org/10.1073/pnas.79.6.1771
52. Sande J.H. van de, Jovin T.M. Z*-DNA, the left-handed helical form of poly[d(GC)] in MgCl2-ethanol, is biologically active. EMBO J. 1982;(1):115-120. https://doi.org/10.1002/j.1460-2075.1982.tb01133.x
53. Zhou C., Zhou F., Xu Y. Comparative analyses of distributions and functions of Z-DNA in Arabidopsis and rice. Genomics. 2009;(93):383–391. https://doi.org/10.1016/j.ygeno.2008.11.012
54. Vongsutilers V., Shinohara Y., Kawai G. Epigenetic TET-catalyzed oxidative products of 5‑methylcytosine impede Z‑DNA formation of CG decamers. ACS Omega. 2020;(5):8056−8064. https://doi.org/10.1021/acsomega.0c00120
Review
For citations:
Chesnokov Yu.V. Conformational variability of DNA double helix. Vegetable crops of Russia. 2020;(6):51-57. (In Russ.) https://doi.org/10.18619/2072-9146-2020-6-51-57