Effect of foliar sodium selenite biofortification on cauliflower yield, nutritional value and antioxidant status
https://doi.org/10.18619/2072-9146-2020-3-63-68
Abstract
Relevance. Biofortification of agricultural crops with selenium is considered to be the most promising method for the human selenium status optimization.
Methods. Effect of foliar biofortification of cauliflower, Polyarnaya Zvezda cv, with sodium selenate of different concentrations on yield, selenium content and biochemical characteristics of plants were investigated.
Results. Enrichment of plants with selenium increased yield by 1.23-1.31 times, sugar content – 1.6 times, ascorbic acid concentration – 1.52-2 times. On the contrary, the treatment did not affect pholyphenol content and antioxidant activity of ethanolic extracts of plants. Selenium accumulation levels decreased according to inflorescences > leaves > roots. Sodium selenate solution at 75 mg/L concentration increased mass of cauliflower leaves 1.9 times and roots – 1.5 times. Consumption of 100 g of cauliflower fortified with 50 mg/L sodium selenate solution provided 100% of the daily adequate selenium consumption level. Utilization of higher sodium selenate concentrations ensured 127% and 418% of the daily adequate consumption level in case of 75 mg/L and 100 mg/L concentrations respectively. Taking into account insignificant differences between sugar content and antioxidants in cauliflower inflorescences fortified with different doses of selenium the most suitable concentration to be used was 50 mg/L.
About the Authors
M. S. AntoshkinaRussian Federation
Marina S. Antoshkina – Cand. Sci. (Agriculture), senior researcher,
14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, Russia, 143072
N. A. Golubkina
Russian Federation
Nadezhda A. Golubkina – Doc. Sci. (Agriculture), Chief researcher,
14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, Russia, 143072
L. L. Bondareva
Russian Federation
Lyudmila L. Bondareva – Doc. Sci. (Agriculture), Head of Laboratory of Cole Crop Breeding and Seed Production
14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, Russia, 143072
References
1. Golubkina N.A., Kekina H.G., Molchanova A.V., Antoshkina M.S., Nadezhkin S.M., Soldatenko A.V. Plants Antioxidants and Methods of their Determination. M., 2020. (In Russ.)
2. Kidin V.V. Workshop on agrochemistry. Moscow, Kolos, 2008. (In Russ.)
3. Adhikari P. Biofortification of selenium in broccoli (Brassica oleracea L. var. italic) and onion (Allium cepa L.). Thesis. 2012, Norwegian University of Life Sciences.
4. AOAC. The Official Methods of Analysis of the Association of Official Analytical; 2012.
5. Avila F.W., Yang Y., Faquin V., Ramos S.J., Guilherme L.R.G., Thannhauser T.W., Li L., Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem. 2014;(165):578-586.
6. Bansal A., Sharma S., Dhillon S.K., Dhillon K.S. Selenium Accumulation and Biochemical Composition of Brassica Grains Grown in Selenate- or Selenite-Treated Alkaline Sandy Loam Soil. Commun. Soil Sci, Plan. 2012;43(9):1316-1331; http://dx.doi.org/10.1080/00103624.2012.666306.
7. Bradfield C.A., Chang Y., Bjeldanes L.F. Effects of commonly consumed vegetables on hepatic xenobiotic-metabolizing enzymes in the mouse. Food Chem. Toxicol. 1985;23(10):899–904.
8. Broadley M., Brown P., Cakmak I., Ma J.F., Rengel Z., Zhao F. Function of nutrients: micronutrients. In Marschner’s Mineral Nutrition of Higher Plants. Academic Press, London. 2012. P.249–269.
9. Djanaguiraman M., Prasad P.V., Seppänen M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 2010;(48):999–1007. doi: 10.1016/j.plaphy.2010.09.009
10. El-Ramady H.R., Alla N.A., Fári M., Domokos-Szabolcsy É. Selenium enriched vegetables as biofortification alternative for alleviating micronutrient malnutrition. Int.J.Hort.Sci. 2014;20(1–2):75 –81. doi: 10.31421/IJHS/20/1-2/1121.
11. Fageria N.K., Moraes M.F., Ferreira E.P.B., Knupp A.M., Biofortification of trace elements in food crops for human health. Commun. Soil Sci, Plan. 2012;(43):561-570.
12. FAOSTAT, “Database,” Agricultural Data, 2004, http://www.fao.org/home/en/.
13. Feng R., Wei C., Tu S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013;(87):58–68. doi: 10.1016/j.envexp-bot.2012.09.002.
14. Fouad A. Ahmed and Rehab F. M. Ali Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower. BioMed. Res. Int. 2013;2013:Article ID 367819; http://dx.doi.org/10.1155/2013/367819.
15. Hartikainen H., Xue T. The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J. Environ. Qual. 1999;(28):1372-1375.
16. Hartikainen H., Xue T., Piironen V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil. 2000;(25):193–200. doi:10.1023/A:1026512921026.
17. Hajiboland R., Rahmat S., Aliasgharzad N., Hartikainen H. Selenium-induced enhancement in carbohydrate metabolism in nodulated alfalfa (Medicago sativa L.) as related to the glutathione redox state. J. Soil Sci. Plant Nutr. 2015;61(4):676-687. doi: 10.1080/00380768.2015.1032181.
18. Heimler D., Vignolini P., Dini M.G., Vincieri F.F., Romani A., Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chem. 2006;99(3):464–469.
19. Jahangir M., Kim H.K., Choi Y.H., Verpoorte R. Health-affecting compounds in Brassicaceae. Compr. Rev. Food Sci. F. 2009;8(2):31–43.
20. Kápolna, E., Laursen K.H., Husted S., Larsen E.H. Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77 Se. Food Chem. 2012;(133):650–657.
21. Kannan V.R., Bastas K.K. Sustainable Approaches to Controlling Plant Pathogenic Bacteria. CRC press. 2015. 421 p.
22. Kornaś A., Filek M., Sieprawska A., Bednarska-Kozakiewicz E., Gawrońska K., Miszalski Z. Foliar application of selenium for protection against the first stages of mycotoxin infection of crop plant leaves. J. Sci. Food Agric. 2019;99(1):482-485. doi:10.1002/jsfa.9145.
23. Oancea A., Gaspar A., Seciu A.-M., Stefan L.M., Craciunescu O., Georgescu F., Lacatusu R. Development of a new technology for protective biofortification with selenium of Brassica crops. AgroLife Scientific J. 2015;4(2):80-85.
24. Owen R.F., Food Chemistry. Marcel Dekkar. New York, NY, USA, 3rd edition, 1996.
25. Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009;2(5):270–278.
26. Park H.S., Han M.H., Kim G.-Y., Moon S.-K., Kim W.-J., Hwang H.J., Park K.Y., Choi Y.H. Sulforaphane induces reactive species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells. Food Chem.Toxicol. 2014;(64):157-165.
27. Raiola A, Errico A., Petruk G., Monti D.M, Barone A., Rigano M.M. Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases. Molecules. 2018;(23):15; doi:10.3390/molecules23010015.
28. Sajedi N., Madani H., Naderi A. Effect of microelements and selenium on superoxide dismutase enzyme, malondialdehyde activity and grain yield maize (Zea mays L.) under water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2011;(39):153-159.
29. Samec D., Pavlovic I., Salopek-Sondi B. White cabbage (Brassica oleracea var. capitata f. alba): botanical, phytochemical and pharmacological review. Phytochem. Rev. 2016;(16):117-135. http://dx.doi.org/10.1007/s11101-016-9454-4.
30. Thiruvengadam M., Chung I.-M. Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chem. 2015;(173):1185-193. doi:10.1016/j.foodchem.2014.10.012.
31. Tortorella S.M., Royce S.G., Licciardi P.V., Karagiannis T.C. Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Sign. 2015;(22):1382-1424.
32. Turakainen M. Selenium and its effects on growth, yield and tuber quality in potatoes. Thesis. 2007. Helsinki.
33. Vallejo F., Tomas-Barberan F.AGarc´ıa-Viguera., C. Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking. J. Sci. Food Agric. 2003;83(14):1511–1516.
34. Utoiu E, Oancea A., Gaspar A., Seciu A.-M., Șrefan L.M., Coroiu V., Craciunescu O., Badiu C.D., Oancea F. Selenium biofortification treatment of cauliflower enhances their content in chemopreventive compounds and in vitro antitumoral activity. Sci. Bul., Series F. Biotechnologies. 2017;(XXI):33-40.
35. Wang C.Q., Water-stress mitigation by selenium in Trifolium repens L. J. Soil Sci. Plant Nutr. 2011;(174):276-282.
36. White P.J., Broadley M.R. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;(182):49-84.
37. Xue T., Hartikainen H., Piironen V., Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil. 2001;(237):55-61.
38. Zhang Y., Talalay P. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res. 1994;54(7):1976s–1981s.
Review
For citations:
Antoshkina M.S., Golubkina N.A., Bondareva L.L. Effect of foliar sodium selenite biofortification on cauliflower yield, nutritional value and antioxidant status. Vegetable crops of Russia. 2020;(3):63-68. (In Russ.) https://doi.org/10.18619/2072-9146-2020-3-63-68