УДК 635.64:581.1:631.5

Фотосинтетическая активность томата в бессменной культуре и звене севооборота при различных системах удобрения

Выродов А.С. – аспирант **Витанов А.Д.** – доктор с.-х. наук, профессор

Институт овощеводства и бахчеводства Национальной академии аграрных наук Украины E-mail: Shyra_S.V@mail.ru

По данным проведенных исследований 2010-2013 годов при определении чистой продуктивности фотосинтеза томата, выращиваемого в бессменной культуре, определено влияние двухлетнего прерывания звеном севооборота и различных систем удобрений на прирост вегетативной массы (г/м² за сутки).

Введение

Изучение фотосинтеза, как одного из основных факторов урожайности, является важной задачей современной биологической науки. Для получения высоких урожаев необходимо искать пути оптимизации фотосинтетической деятельности и продуктивности растений, так как фотосинтез является источником создания энергетического потенциала растения.

Урожайность растения является сложным признаком, ее фенотипическое выражение зависит от многих показателей: скорости, эффективности удобрения и орошения, устойчивости к неблагоприятным факторам среды, болезням, вредителям, структуры растений, высокой активности фотосинтетического аппарата [2].

Фотосинтез связан с комплексом процессов жизнедеятельности. Характер этой связи непостоянен и зависит от различных факторов, включая генетически обусловленные свойства сорта и условия, в которых осуществляется его реализация [3].

Большой интерес как в теоретическом, так и в практическом отношении представляют исследования по изучению интенсивности и продуктивности фотосинтеза у всевозможных видов и сортов культурных растений, произрастающих в различных экологических условиях.

Исследования А.С. Овсянникова показали, что чем выше продуктивность фотосинтеза и чем больше ассимилянтов расходуется на урожай, тем соответственно меньше дней требуется для получения единицы массы хозяйственного урожая и тем более ценным, с точки зрения продуктивности, является сорт [4].

Целью опыта являлось определение влияния звена севооборота и фонов удобрений на рост и развитие томата, выращиваемого в бессменной культуре.

Материалы и методы

Опыт по бессменному выращиванию овощных культур заложен в 1963 году на богаре в Киевской области, Украина. Почва – чернозем оподзоленный, малогумусный, лег-

косуглинистый на лессовидном суглинке.

Нормы органических и минеральных удобрений под томат (Киевский 139, Флора, Хорив, Чайка) – 25 т/га перегноя, $N_{90}P_{120}K_{90}$.

Такие же нормы удобрений вносятся и на вторую часть опытных участков бессменной культуры, где введено звено севооборота, которое прерывает ее на два года.

Схема опыта предусматривает четыре варианта питания:

- 1. Без удобрений (контроль)
- 2. Перегной
- 3. NPK
- 4. Перегной + NPK

Все удобрения вносятся под зяблевую вспашку. Площадь посевных участков 273 м² (10,5х26 м), учетных – 50 м², повторность 3-кратная. Размещение участков – систематическое в один ярус.

Изучая фотосинтетическую деятельность растений – определяли размер листовой поверхности весовым методом, чистую продуктивность фотосинтеза рассчитывали по формуле Кидда, Веста и Бриггса [1]:

Фч.пр. =
$$\frac{B1 - B2}{\Pi (J1 + J2)^{\frac{1}{2}}}$$

где **Фч.пр.** – величина чистой продуктивности фотосинтеза, г/м 2 в сутки;

В1 и **В2** – сухая масса пробы, в начале и в конце учетного периода, г;

Л1 и **Л2** – площадь листьев пробы в начале и в конце периода, M^2 ;

п – количество суток в учетном промежутке времени.

Результаты

Наименьшим приростом вегетативной массы (г/м2) в сутки, характеризовались сорта томата, выращенные на контрольных участках (без удобрений). Среди исследуемого томата наименьшая фотосинтетическая продуктивность была у сорта Киевский 139 (рис), у которого средний по годам показатель прироста 1,67 г/м2 в сутки. Несколько большей тенденцией к приросту характеризовались сорта Флора и Хорив, показатель по этим сортам составил 1,81 г/м2 в сутки. Наибольшая чистая продуктивность фотосинтеза в бессменной культуре была у сорта Чайка – 1,83 г/м² в сутки.

С внесением 25 т/га перегноя чистая продуктивность фотосинтеза повышалась согласно сортовых особенностей. Наименьшим приростом характеризовался сорт Киевский 139 – 1,74 г/м² в сутки. А наибольший прирост (1,91 г/м² в сутки) был у сорта Чайка.

При внесении полного минерального удобрения $N_{90}P_{120}K_{90}$, показатели сортов томата в определенной мере, относительно участков с внесением перегноя и контроля (без удобрений), выросли. Так, по сорту Киевский

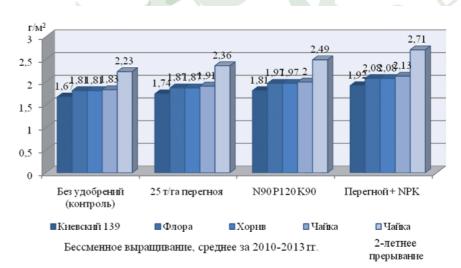


Рис. Чистая продуктивность фотосинтеза томата от высаживания в открытую почву до фазы первого сбора плодов, r/m^2 за сутки (2010-2013 годы).

139 чистая продуктивность фотосинтеза в сутки составляла 1,81 г/м². Высшим приростом характеризовались сорта Флора и Хорив, у которых показатель составлял 1,97 г/м² в сутки. И наибольший прирост в бессменной культуре отмечался у сорта Чайка – 2,00 г/м² в сутки.

Максимальный прирост вегетативной массы отмечено на фоне с комбинированным внесением органических и минеральных удобрений (25 т/га перегноя + $N_{90}P_{120}K_{90}$). У сорта Киевский 139 чистая продуктивность фотосинтеза составляла 1,92 г/м² в сутки среднее по годам исследований, а у сорта Хорив – 2,07 г/м² в сутки. По сорту Флора отмечался показатель в 2,08 г/м² в сутки. Наибольшим приростом определялся сорт Чайка – 2,13 г/м² в сутки.

При прерывании бессменного выращивания томата сорта Чайка двупольным звеном севооборота наблюдалась такая же закономерность относительно фонов питания. Но под дей-

ствиями звена севооборота приросты вегетативной массы растений в определенной степени выросли. И наибольший прирост отмечен на фоне с органо-минеральным питанием – 2,71 г/м² в сутки.

Выводы

На основе полученных данных проведенных исследований в 2010-2013 годах по определению чистой продуктивности фотосинтеза наибольшим приростом вегетативной массы (г/м²) за сутки характеризовались участки с комбинированным внесением полного минерального и органических удобрений, колебания между сортами в бессменной культуре составляло 1,83-2,13 г/м² в сутки. Среди исследуемых растений томата большим приростом вегетативной массы выделялся сорт Чайка, а с прерыванием его бессменного выращивания двухлетним звеном севооборота, прирост по фонам повысился на 0,4-0,58 г/м2 в сутки.

Литература

- 1. Бондаренка Г. Л. Методика дослідної справи в овочівництві і баштанництві / за ред. Г. Л. Бондаренка, К. І. Яковенка. Х.: Основа, 2001. 280-281 с.
- 2. Жученко А. А. Адаптивный потенциал культурных растений (эколого-генетические основы) / А. А. Жученко. Кишинев: Штиинца, 1988.
- 3. Жидехина Т.В. Фотосинтетическая и хозяйственная продуктивность черной смородины в связи с селекцией на высокую урожайность / Т.В. Жидехина // Сб. науч. трудов ВНИИС им. И. В. Мичурина. Мичуринск, 1990. С. 52-56.
- 4. Овсянников А.С. Изучение зависимости между морфофизиологическими признаками и урожайностью земляники в агроценозе / А.С. Овсянников // Сб. науч. работ ВНИИС им. И.В. Мичурина. Вып. 27. Мичуринск, 1978. С. 94-98.