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Содержание пигментов 
и вторичных метаболитов 
в листьях базилика (Ocimum 
basilicum L. и O. × citriodorum) 
в условиях светокультуры
РЕЗЮМЕ
Актуальность. Светодиодное освещение позволяет управлять биосинтезом первичных и вторич-
ных метаболитов, повышая пищевую и фармакологическую ценность растений. Базилик – ценная
эфиромасличная культура с высоким содержанием биологически активных соединений. При этом
малоизученными остаются вопросы, связанные с регулированием спектрального состава свето-
диодов для направленной стимуляции роста и биосинтеза конкретных компонентов. 
Материалы и методы. Исследовано влияние четырёх LED-режимов (Синий: Белый: Красный:
Розовый, %: 25:70:25:25; 50:80:25:50; 50:60:50:25; 50:70:25:25; Плотность фотонного потока
126–149 мкмоль/0,5 м2/с) на базилик разных хемотипов:  «цитральный» (O. × citriodorum Vis.
Каприз), «линалоольный» (Ocimum basilicum L. Лучано), «метилциннаматный» (Ocimum
basilicum L. №232/21). Спектрофотометрически определяли содержание хлорофиллов, кароти-
ноидов, фенольных соединений (ФС) и флавонолов. Путем гидродистилляции получали эфир-
ное масло, компонентный состав которого анализировали методом газовой хроматографии с
масс-селективным детектированием. Статистическая обработка – двухфакторный анализ
ANOVA (тест Тьюки, p<0,05).
Результаты. Содержание хлорофиллов и каротиноидов у сорта Каприз выше в вариантах, в кото-
рых содержание ФС, в том числе флавонолов, наименьшее, и наоборот, у растений сорта Лучано
содержание фотосинтетических пигментов выше в тех вариантах, где у сорта Каприз и образца
№232/21 наблюдалось их снижение. Наименее заметны изменения в накоплении ФС у образца
№232/21, эфирное масло которого на 87% состоит из фенилпропаноидного компонента метилцин-
намата. Наиболее чувствительными к стрессу оказались растения сорта Каприз, а наиболее устой-
чив – образец №232/21.
Заключение. Режим 50:60:50:25 способствовал увеличению количества фотосинтетических пиг-
ментов, тогда как 50:70:25:25 стимулировал накопление ФС через активацию фенилпропаноидно-
го пути из-за фотоокислительного стресса. Предложенные LED-режимы позволяют направленно
модулировать биохимический профиль базилика, обеспечивая либо высокую антиоксидантную
активность, либо максимальный выход эфирного масла.
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Content of pigments and secondary
metabolites in basil leaves 
(Ocimum basilicum L. and O. × citriodorum)
under light culture conditions
ABSTRACT 
Relevance. LED lighting enables targeted control of primary and secondary metabolite biosynthesis,
enhancing the nutritional and pharmacological value of plants. Basil is a valuable essential-oil crop rich
in bioactive compounds. However, the regulation of LED spectral composition for directed stimulation of
growth and biosynthesis of specific components remains underexplored.
Materials and Methods. The effects of four LED regimes (Blue:White:Red:Deep Pink, %: 25:70:25:25;
50:80:25:50; 50:60:50:25; 50:70:25:25; photon flux density 126–149 µmol/0.5 m²/s) were studied on basil
chemotypes:  “citral” (O. × citriodorum Vis. Kapriz),  “linalool” (Ocimum basilicum L. Luchano),  “methyl
cinnamate” (Ocimum basilicum L. №232/21).  Chlorophylls, carotenoids, phenolic compounds (PC), and
flavonols were quantified spectrophotometrically. Essential oil was obtained by hydrodistillation and
analysed by GC-MS. Data were processed by two-way ANOVA (Tukey test, p < 0.05).
Results. In Kapriz, chlorophyll and carotenoid levels were highest where PC (including flavonols) were
lowest, and vice versa. In Luchano, photosynthetic pigments peaked in regimes where they declined in
Kapriz and №232/21. Sample №232/21 showed the least change in PC accumulation; its essential oil con-
sisted of 87% methyl cinnamate. Kapriz plants were most stress-sensitive, while №232/21 was the most
resilient.
Conclusion. The 50:60:50:25 regime boosted photosynthetic pigments, whereas 50:70:25:25 enhanced
PC via phenylpropanoid pathway activation under photo-oxidative stress. The proposed LED regimes
enable targeted modulation of basil’s biochemical profile – delivering either high antioxidant activity or
maximum essential-oil yield.
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Введение

Свет представляет собой один из важнейших факто-
ров, контролирующих жизнедеятельность растений.

Ответная реакция на свет определяется наличием множе-
ства фоторецепторов – белков, способных воспринимать
качество, интенсивность, продолжительность и направле-
ние света и запускать сигналы, которые регулируют много-
численные физиологические и метаболические реакции.
Фоторецепторы играют решающую роль в стимуляции био-
химических путей метаболитов за счет модуляции экспрес-
сии определенных генов [1]. 

В настоящее время искусственное освещение способно
обеспечивать контроль над растениями, влияя на синтез
первичных и вторичных метаболитов. Светодиодные (LED)
светильники имеют преимущества перед традиционными
источниками искусственного освещения благодаря возмож-
ности манипуляции спектральным составом, мощностью
освещения, продолжительностью фотопериода и направле-
нием света. Они часто используются для круглогодичного
промышленного производства растительной продукции.
Светодиодное освещение может содействовать эффектив-
ному использованию защищенного грунта за счет доступно-
го и менее затратного выращивания растений с повышен-
ной пищевой ценности [2].

Биосинтез фотосинтетических пигментов и вторичных
метаболитов может регулироваться светочувствительными
генами. Хлорофиллы поглощают свет в красной и синей
областях видимого спектра, каротиноиды – в синей, зеленой
и фиолетовой. Поэтому красная и синяя длины волн света
являются наиболее эффективными для управления фото-
синтезом. Как правило, красный свет регулирует процессы
роста и развития растений, повышает урожайность и накоп-
ление пигментов. Синий свет влияет на движение устьиц,
фотосинтез и фотоморфогенез. В дополнение к красному и
синему свету, дальний красный свет также используется в
качестве источника освещения, опосредующего фоторецеп-
торные реакции [3; 4]. Зеленый свет в значительной мере
повышает эффективность использования воды растениями,
способствует фотосинтетической ассимиляции углерода,
улучшает качество и усиливает продуктивность растений
[3].

Базилик (Ocimum L.) – ценная эфиромасличная и пряно-
ароматическая культура, широко выращиваемая в России и
других странах. Родовое название происходит от греческого
слова "ozo", что означает «благоухать» [5]. Род Ocimum L.
включает около 150 однолетних и многолетних видов травя-
нистых растений, реже – вечнозеленых кустарников, произ-
растающих в тропических, субтропических районах Азии и
интродуцированных на территориях Южной и Северной
Америки, Африки, Европы [6; 7]. Такие религии, как христи-
анство и индуизм, с давних времен придавали символиче-
ское и ритуальное значение представителям семейства
Яснотковых (Lamiaceae), а именно Ocimum basilicum L. в
христианстве и Ocimum tenuiflorum L. (син. Ocimum sanctum
L.) в индуизме. Этот фактор сыграл значительную роль в
дальнейшем распространении базилика, часто называемого
«королем трав». Растение было популярно не только благо-
даря своей сакральной и декоративной ценности, но и
лечебным свойствам. Собранная в период цветения трава и
семена упоминались в различных учебниках по фитотера-
пии и травниках [8]. Базилик обладает противоаллергенным,
обезболивающим, противовоспалительным, антиоксидант-
ным, антимикробным, гипогликемическим, гепатопротектор-

ным, антигиперлипидемическим, противоязвенным, гипо-
тензивным, кардиопротекторным, цитопротекторным, имму-
номодулирующим, кардиостимулирующим, седативным,
снотворным, антиноцицептивным, противосудорожным,
химиопрофилактическим, химиомодулирующим, противора-
ковым, ларвицидным и др. свойствами [9-12].
Фармакологический потенциал лекарственного растения
объясняется наличием широкого спектра биологически
активных соединений.

Базилик отличается высокой питательной ценностью, что
обусловлено присутствием в его составе жиров, белков,
витаминов (включая С, Е, К, А, β-каротин, В1, В2, В3, В5, В6,
В9 и холин), минеральных веществ (Fe, Ca, Mg, P, Mn, Na, K,
Zn), а также множества вторичных метаболитов, таких как
эфирные масла, фенолы, флавоноиды, антоцианы, дубиль-
ные вещества и стероиды [12].

Лекарственное растительное сырье включает первичные
и вторичные метаболиты. Первичные метаболиты включе-
ны в процессы роста, развития и репродукции. Вторичные
метаболиты способствуют взаимодействию организма с
окружающей средой, выполняя экологические функции [13].
Присутствие последних в растительном сырье в значитель-
ной степени определяет его биологическую ценность, вкус и
аромат. Фотосинтетические пигменты, а именно хлорофил-
лы и каротиноиды, относятся к изопреноидным липидам,
участвующим в поглощении квантов света, оптимальном
перераспределении энергии между реакционными центра-
ми фотосистем, защите от окислительного стресса [14]. 

Оксигенные фотосинтезирующие организмы содержат
хлорофилл a и хлорофилл b. Хлорофилл a – наиболее рас-
пространенная форма, присутствующая в реакционных
центрах и светособирающих комплексах; хлорофилл b,
напротив, у высших растений функционирует как вспомога-
тельный светособирающий пигмент [15]. Каротиноиды
можно разделить на две группы: каротины (α-каротин, β-
каротин, γ-каротин, ликопин) и ксантофиллы (β-криптоксан-
тин, лютеин, зеаксантин, астаксантин). Они входят в состав
светособирающей антенны и расширяют спектральный диа-
пазон фотосинтетически активной радиации (ФАР). Как
следствие, играют важную роль в фотосинтезе и фотозащи-
те, способствуя поглощению света и гашению избыточной
энергии. При этом в нефотосинтезирующих органеллах
ксантофиллы действуют как антиоксиданты, цветовые
аттрактанты и предшественники растительных гормонов
[16]. 

Эфирные масла (ЭМ), состоящие преимущественно из
производных терпеноидов (моно- и сесквитерпены) и
фенилпропаноидов, содержат летучие соединения, которые
отвечают за характерный аромат многих растений [17]. Они
обладают высокой практической ценностью благодаря
своим терапевтическим свойствам и применению во многих
отраслях промышленности (фармацевтическая, пищевая,
косметическая и др.) [7, 18]. Биосинтез летучих соединений
осуществляется в определенных типах клеток – железистых
трихомах, присутствующих на всех частях растения [19]. По
наличию преобладающих компонентов в составе ЭМ бази-
лик подразделяют на хемотипы, среди которых наиболее
распространенные: метилхавикольный, линалоольный,
метилэвгенольный, эвгенольный и гераниольный [20; 21].
Другие компоненты, часто встречающиеся в ЭМ Ocimum
spp., 1,8-цинеол, гермакрен D, β-бергамотен и t-кадинол,
реже можно обнаружить геранилацетат, β-кариофиллен, p-
цимен, цитраль, β-бисаболен, метилэвгенол [6; 22]. 

АГРОХИМИЯ, АГРОПОЧВОВЕДЕНИЕ, ЗАЩИТА И КАРАНТИН РАСТЕНИЙ
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Фенольные соединения (ФС) – обширная группа разнооб-
разных водорастворимых вторичных соединений, которые
часто представлены гликозидами [18]. Эти природные анти-
оксиданты локализуются в вакуолях растительных клеток и
способны защищать клеточные мембраны от индуцированно-
го окислительного стресса и повреждения свободными ради-
калами [7]. 

Антоцианы и другие флавоноиды, в том числе флавоны,
флавонолы и проантоцианидины, представляют собой группу
специализированных растительных метаболитов, отвечающих
за множество функций, помимо окрашивания плодов, цветков,
листьев [18; 23]. Они могут выступать симбиотическими азот-
фиксаторами, фильтрами ультрафиолета, аттрактантами,
ингибиторами клеточного цикла, химическими посредниками и
физиологическими регуляторами, а также участвовать в защи-
те от фитопатогенов [7]. 

Содержание первичных и вторичных метаболитов в расте-
ниях определяется как генетическими факторами, так и факто-
рами окружающей среды. Кроме того, на количество и каче-
ство активных компонентов влияют условия выращивания,
фаза онтогенеза, отобранная часть растения, а также способ
пробоподготовки и метод анализа [7].

Несмотря на существующий прогресс в применении свето-
диодных технологий при выращивании ароматических расте-
ний семейства Яснотковых (Lamiaceae) [24-28], малоизученны-
ми остаются вопросы, связанные с регулированием спектраль-
ного состава светодиодов для направленной стимуляции
роста и биосинтеза ценных биологически активных соедине-
ний. 

Цель нашего исследования состояла в изучении влияния
светодиодного освещения с различным спектральным соста-
вом света на накопление пигментов и вторичных метаболитов
в листьях базилика (Ocimum basilicum L. образец №232/21,
Лучано и O. × citriodorum Vis. Каприз) в условиях интенсивной
светокультуры. 

Материалы и методы исследований
Работу проводили в условиях вертикальной сити-фермы с

управляемым LED-освещением ФИЦ Биотехнологии РАН.
1. Растительный материал и условия выращивания
Для изучения были использованы сорта O. × citriodorum Vis.

Каприз (ФГБНУ ФНЦО) и Ocimum basilicum L. образец №232/21
(из коллекции ФГБНУ ФНЦО), Лучано (компания «Гавриш»). 

У O. × citriodorum Vis. Каприз – растения высотой 35-40 см,
листья длиной 4,5-5,5 см, овальные, желтовато-зеленые, опу-
шенные, с сильным лимонным запахом. Соцветие длинное,
узкое, цветки белые. У Ocimum basilicum L. образец №232/21 –
растения высотой 22-27 см, листья широко-яйцевидные, зеле-
ные с сизым налетом, нежные, длиной 3,5-4,5 см. Соцветие
длинное, узкое, цветки бледно-розовые. У Ocimum basilicum L.
Лучано – растения высотой 35-40 см, листья выпуклые, слабо-
пузырчатые, овальные, зеленые, длиной 6,0-7,0 см. Соцветие
длинное, узкое, цветки белые. 

В качестве субстрата использовали торфяной грунт
«Агробалт-С». Семена растений высевали в 96-ячеечные рас-
садные кассеты. Сеянцы в возрасте 5 дней пикировали в горшки
Р9. Выращивали по 30 растений (10 штук в каждой повторности)
каждого сорта на стеллаже 50х100х50 см. Полив осуществляли
регулярно из расчета 70% от полной влагоемкости почвы. В каче-
стве некорневых подкормок применяли водорастворимое удоб-
рение «FERTIKA-Люкс» (АО «Фертика», РФ).   

В рамках исследований было изучено влияние комбинаций
различных цветов спектра в соответствии со светодиодами
фирмы Plant Lighting (Edison Opto Corporation Ltd., Нью-Тайбэй,
Тайвань). Характеристики светодиодов: белый (Б) (White, 4000 K),
красный (К) (Red, 650-670 нм), синий (С) (Blue, 450-460 нм) и розо-
вый (Р) (DeepPink, 400-800 нм). Режим освещения – фотопериод
14/10 ч (свет/темнота). Параметры микроклимата: температура
22±2°С, относительная влажность 55±5%. Режимы освещения
различались по интенсивности свечения светодиодов каждого
цвета в процентах от максимальной. Использовались следующие
экспериментальные режимы освещения, С/Б/К/Р (%): 1)
25/70/25/25, 2) 50/80/25/50, 3) 50/60/50/25, 4) 50/70/25/25. 

Спектральные характеристики источников света измеряли с
помощью спектрометра Uprtek MK350S Premium (UnitedPower
Research Technology Corporation, Тайвань) на расстоянии 25
см от листовой поверхности в 9 точках. Плотность фотонного
потока (PFD) для каждого варианта составляла 128, 149, 126 и
148 мкмоль/0,5м2/с соответственно, уровень освещенности –
5708, 6268, 5079, 6437 лм/0,5 м2 соответственно.
Энергетическая облученность (мВт/0,5 м2) светодиодов пред-
ставлена в таблице 1.

2. Определение хлорофиллов и каротиноидов
Полностью развитые листья с растений в фазе бутониза-

ции брали с главных побегов из 4-5 узла. Отбор образцов

Таблица 1. Энергетическая облученность (мВт/0,5м2) в различных областях спектра при экспериментальном светодиодном освещении
Table 1. Energy irradiation (mW/0.5m2) in various spectral regions under experimental LED lighting

Область спектра

Варианты LED-освещения
(С:Б:К:Р)

25:70:25:25 50:80:25:50 50:60:50:25 50:70:25:25

380~780 нм 26336 30661 26220 30805

400~700 нм 25278 29290 25292 29779

Синяя (400~500 нм) 6104 7719 7563 8624

Зеленая+Желтая (500~600 нм) 6938 7431 5995 7834

Красная (600~700 нм) 12376 14294 11856 13476

Дальняя красная (700~780 нм) 1081 1408 952 1050

ISSN 2618-7132 (Onl ine)   Овощи России №6  2025 Vegetable crops of Russia №6  2025   ISSN 2072-9146 (Print)[  161 ]



осуществляли с использованием механического перфора-
тора для обеспечения представительности аналитиче-
ских навесок. На листовой поверхности, избегая крупных
жилок, вырезали круглые диски диаметром 5 мм.
Взвешивали 20 мг смешанной пробы с точностью до 0,001
г. Полученную навеску помещали в пробирку Эппендорф
объемом 1,5 мл вместе с шариком из нержавеющей стали
диаметром 3 мм. Для предотвращения феофитинизации
добавляли ∼50 мг MgO (ч., АО «ЛенРеактив», Россия).
Далее вносили 1,0 мл охлажденного до 4°С ацетона
(ч.д.а., АО «ЭКОС-1», Россия) и измельчали на гомогени-
заторе TissueLyser II (QIAGEN, Германия). Встряхивание
продолжали в течение 5 мин с частотой колебаний 20 Гц.
Полученную суспензию осаждали в центрифуге BKC-
TH24R (Biobase, Китай) при температуре 10оС со скоро-
стью 500 x g (RCF) в течение 5 мин. Затем отбирали надо-
садочную жидкость и переносили в калиброванную про-
бирку объемом 15 мл. Снова вносили 1,0 мл охлажденно-
го экстрагента в пробирки с осадком и повторяли цикл (∼3
раза) до тех пор, пока надосадочная жидкость не станет
прозрачной. Экстракт в пробирках доводили до метки (5
мл) охлажденным ацетоном (х.ч., АО «ЭКОС-1», Россия).
Далее подготовленные растворы центрифугировали при
температуре 10°С со скоростью 700 x g (RCF) в течение
10 мин [29; 30].  

Данный способ пробоподготовки позволяет повысить схо-
димость результатов измерений, а также улучшить вос-
производимость и правильность анализа. Количественное
определение следует проводить сразу после приготовления
экстрактов с целью получения точных показателей содержа-
ния фотосинтетических пигментов [30].

Дальнейшую работу осуществляли на двухлучевом спек-
трофотометре UV-1900i (Shimadzu, Япония) в кварцевых
кюветах, закрытых крышкой, с толщиной поглощающего
слоя 10 мм. 

Содержание хлорофиллов a и b, суммарных каротинои-
дов находили путем получения аналитического сигнала при
длинах волн 662, 645, 470 нм. Мутность растворов проверя-
ли при длинах волн 750, 520 нм. С целью соблюдения зако-
на Бугера-Ламберта-Бера значения оптических плотностей
должны находиться в диапазоне 0,3-0,85 [31]. 

Экстракты, при необходимости, разбавляли таким обра-
зом, чтобы полученные величины оптической плотности для
каждого пигмента находились в оптимальном диапазоне.
Стоит отметить, что пробоподготовку и измерение аналити-
ческого сигнала проводили при тусклом свете. 

Для расчета количества (мг/г) хлорофиллов a (Chla) и b
(Chlb), общего содержания каротиноидов (x+c) использова-
ли следующие уравнения [30; 32]:

где A – оптическая плотность экстракта; V – общий объем
экстракта с учетом разбавления, л; m – масса навески, г.

Измерение проводилось в четырехкратной биологиче-
ской и двукратной аналитической повторностях. Результат
пересчитывали на сырое вещество (мг/г).

Исследование выполнено на базе ИНО ФЦК УН ЦКП
«Сервисная лаборатория комплексного анализа химических
соединений» (ФГБОУ ВО РГАУ-МСХА имени К.А.
Тимирязева).

3. Определение суммы флавонолов 
и фенольных соединений (ФС)
Для исследования использовали верхние листья главных

побегов с растений в фазе бутонизации. Отбор образцов
осуществляли точечно с использованием механического
перфоратора, избегая крупных жилок, с целью получения
представительной пробы. Экстракцию измельченного све-
жего растительного сырья проводили трижды с помощью
ультразвуковой ванны Elmasonic Select 100 (Elma,
Германия), работающей на частоте 37 кГц с мощностью 40
Вт/л, при температуре 60˚С в течение 30 минут раствором
70% этанола (х.ч., «Экрос», Россия) при соотношении сырье
: экстрагент = 1 : 20 г/мл [33]. Экстракты осаждали в центри-
фуге BKC-TH24R (Biobase, Китай) при температуре 4°С со
скоростью 7000 х g в течение 10 мин [34]. Полученные
супернатанты отбирали в калиброванные пробирки объе-
мом 15 мл, доводили до метки экстрагентом и хранили при
температуре 4°С [33]. 

Общее содержание ФС определяли спектрофотометри-
ческим методом [35] в модификации [36] с использованием
реактива Фолина-Чокальтеу (Alpha Chemika, Индия).
Измерение проводилось в трехкратной биологической и
двукратной аналитической повторностях. Аналитический
сигнал получали с помощью двухлучевого спектрофотомет-
ра UV-1900i (Shimadzu, Япония). Концентрацию вычисляли
по калибровочной кривой галловой кислоты (CAS 149-91-7,

ООО «Геофарма», Россия) в диапазоне измерений от 10 до
45 мг/л при λ max = 765 нм. Результаты выражали в мг-экв.
галловой кислоты / г сырой массы.

Общее содержание флавонолов [37] определяли спек-
трофотометрически по модифицированному [38] методу
Харборна [18] с использованием алюминия хлористого 6-
водного (ч.д.a., АО «ЛенРеактив»). Измерение проводилось
в трехкратной биологической и двукратной аналитической
повторностях. Оптическую плотность определяли с помо-
щью двухлучевого спектрофотометра UV-1900i (Shimadzu,
Япония). Концентрацию вычисляли по калибровочной
кривой кверцетина (CAS 117-39-5, ООО «Геофарма»,

Россия) в диапазоне измерений от 4 до 14 мг/л при λ max =
425 нм. Результаты выражали в мг-экв. кверцетина / г сырой
массы.

Исследование выполнено с использованием оборудова-
ния ИНО ФЦК УН ЦКП «Сервисная лаборатория комплекс-
ного анализа химических соединений» (ФГБОУ ВО РГАУ-
МСХА имени К.А. Тимирязева).

4. Выделение эфирного масла 
и определение его компонентного состава 
Растения срезали в фазе цветения, раскладывали и

сушили при температуре 23…25°C на лабораторных столах
до состояния ломкости листьев. Для определения ЭМ
использовали метод гидродистилляции с приемником
Гинзберга. Навеску листьев помещали в круглодонную
колбу объемом 1000 мл и добавляли дистиллированную
воду в соотношении 1:2. Смесь перегоняли с водяным
паром в течение 60 мин. Выход ЭМ (г/100 г) определяли в
пересчете на воздушно-сухое вещество. Анализ проводили
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на кафедре химии ФГБОУ ВО РГАУ-МСХА имени К.А.
Тимирязева. 

Состав компонентов ЭМ исследовали на хроматографе
GC 2010 Plus с квадрупольным масс детектором
GCMSQP2010 Ultra (Shimadzu, Япония).
Хроматографическое разделение проводили на капилляр-
ной колонке MDN-5 (Supelco, США) (30 м × × 0.25 мм × 0.25
мкм). В качестве газа-носителя использовали гелий со ско-
ростью потока 1 мл/мин (линейная скорость 36,5 см/с) и
отношением деления 1:10. Рабочие параметры: температу-
ра инжектора 180°С, интерфейса 205°С, детектора 200°С.
Температурный режим термостата: 60°С в течение 2 мин,
5°С/мин до 120°С, 10°С/мин до 150°С, 30°С/мин до 300°С,
300°С в течение 2 минут. Диапазон регистрации масс
составлял от 29 до 400 m/z. Идентификацию пиков осу-
ществляли с использованием библиотеки масс спектров
NIST 11 (США). Результат выражали в % на воздушно-сухое
вещество. Анализ проводился в аналитической лаборато-
рии ФИЦ Биотехнологии РАН.

5. Обработка результатов
Статистическую обработку полученных данных прово-

дили при помощи языка программирования R 4.5.1 с

интегрированной средой разработки RStudio 1.4.1717
(RStudio PBC, США). Для оценки статистической значимо-
сти наблюдаемых различий показателей применяли двух-
факторный дисперсионный анализ (ANOVA) с поправкой
Тьюки на множественные сравнения. Различия считали
значимыми при p < 0,05.

Результаты исследований и их обсуждение
1. Фотосинтетические пигменты
Результаты исследований содержания фотосинтетиче-

ских пигментов (хлорофиллов а, b и каротиноидов) в
листьях базилика, выращенного при различных вариантах
LED-освещения, представлены на рисунках 1-3.

Концентрация хлорофилла a в сортах O. × citriodorum
Vis. Каприз, Ocimum basilicum L.образец №232/21 и
Ocimum basilicum L. Лучано находилась в следующих диа-
пазонах: 0,87-1,12, 0,51-1,03 и 0,75-1,38; хлорофилла b –
0,30-0,36, 0,14-0,34 и 0,24-0,41; каротиноидов – 0,23-0,32,
0,13-0,25 и 0,20-0,29 соответственно. Режим 50:60:50:25
(с высоким соотношением энергетической облученности
С:К=0,6 и С:З-Ж=1,3 длин волн), характеризующийся низ-
кой освещенностью – 5079 лм/0,5 м2, способствовал наи-
большему накоплению пигментов практически во всех

Рис. 2. Содержание Chl b (мг/г сырого вещества) в листьях базилика при использовании вариативных режимов LED-освещения
(С:Б:К:Р). Разные буквы (a, b, c, d, e, f) указывают на статистически значимые различия (p < 0,05) между вариантами (тест Тьюки)

Fig. 2. Сontent of Chl b (mg/g of raw weight) in basil leaves using variable LED lighting modes (B:W:R:DP). Different letters (a, b, c, d, e, f) indicate
statistically significant differences (p < 0.05) between the variants (Tukey test)

Рис. 1. Содержание Chl a (мг/г сырого вещества) в листьях базилика при использовании вариативных режимов LED-освещения
(С:Б:К:Р). Разные буквы (a, b, c, d, e) указывают на статистически значимые различия (p < 0,05) между вариантами (тест Тьюки)

Fig. 1. Сontent of Chl a (mg/g of raw weight) in basil leaves using variable LED lighting modes (B:W:R:DP). Different letters (a, b, c, d, e) indicate
statistically significant differences (p < 0.05) between the variants (Tukey test)
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образцах растений, напротив, режим 50:80:25:50 (с низ-
ким соотношением энергетической облученности К:ДК
=10 длин волн), характеризующийся высокой освещен-
ностью =6268 лм/0,5 м2, приводил к снижению концентра-
ций хлорофиллов и каротиноидов. При этом значитель-
ные изменения содержания фотосинтетических пигмен-
тов по экспериментальным вариантам были у O. basilicum
в отличие от O. citriodorum. Учитывая содержание влаги
(∼85%) в листьях, полученные данные можно сопоставить
с литературными [39-42] (в пересчете на мг/г сухого веще-
ства). 

При выращивании растений O. basilicum L. сорта Dolly
(возраст 56 дней) в условиях 12-часового режима фотопе-
риода с фотонной облученностью 300 мкмоль/м2/с на рас-
стоянии 100 см количество хлорофилла a варьировало в
диапазоне 9,3-10,7; хлорофилла b – 2,1-2,3; каротиноидов
– 2,7-3,6 [39], что значительно превышало (∼в 2 раза)
полученные нами данные в связи с сортовыми особенно-
стями и расстоянием до фитолампы. При этом в варианте
LED-освещения, отличающегося самой высокой долей
красной и дальней красной длин волн, самой низкой
долей синей и зеленой + желтой длин волн, а также низ-
ким отношением красного света к дальнему красному,
наблюдалось снижение концентрации фотосинтетических
пигментов, что аналогично полученным нами результа-
там. 

При выращивании микрозелени O. basilicum L. сорта
Sweet Genovese (возраст 17 дней) в условиях 12-часового
режима фотопериода с использованием фитоламп, харак-
теризующихся фотонной облученностью 120-180
мкмоль/м2/с содержание хлорофилла a колебалось в рай-
оне 4,8-6,8; хлорофилла b – 2,1-3,3; каротиноидов – 1,0-
1,5 [40]. При выращивании микрозелени O. basilicum L.
сорта Sweet Genovese (возраст 25 дней) в условиях 24-
часового фотопериода с использованием фитоламп,
характеризующихся фотонной облученностью 300
мкмоль/м2/с концентрация хлорофилла a находилась в
диапазоне 5,3-7,3; хлорофилла b – 1,8-2,3; каротиноидов
– 2,7-3,8 [41]. Снижение содержания хлорофиллов наблю-
далось при обработке светом с высокой долей красной
длины волны. И значения, и найденная зависимость сов-

падали с достигнутыми нами данными.
Стоит отметить, что в растениях Lactuca sativa L. var.

longifolia при высокой плотности фотосинтетического
фотонного потока (194,54 мкмоль/м2/с) содержание хлоро-
филлов и каротиноидов было наименьшим, тогда как
обратное наблюдалось для самой низкой фотонной облу-
ченности (151,41 мкмоль/м2/с) [42], что соотносилось с
нашими результатами. Авторы [42] предположили, что
при высокой интенсивности освещения количества азота
было недостаточным для поддержания фотосинтеза. 

Так, сочетание высокоэнергетического синего света с
низкоэнергетическим дальним красным светом может
увеличить как вегетативный рост, так и уровень фотосин-
тетических пигментов. Однако, использование высоких
уровней дальнего красного света может привести к анта-
гонизму с красным или синим светом, что способствует
снижению хлорофиллов и каротиноидов [4; 43].
Вышесказанное подтверждается нашими результатами.

2. Вторичные метаболиты
Сортовые особенности растений базилика определяют

отклик ФС на преобладание конкретной области в спек-
тральном составе LED-освещения. В исследуемых образ-
цах по процентному соотношению вычисляли преобла-
дающие компоненты ЭМ (табл. 2). 

В ЭМ изученных образцов базилика было выявлено до
30 различных компонентов, среди которых преобладали
фенилпропаноидные (estragole, eugenyl acetate, methyl
cinnamate), монотерпеновые (1,8-cineole, β-ocimene,
linalool, cis-citral, trans-citral) и сесквитерпеновые
(germacrene D, trans-α-bergamotene, α-bergamotene)
соединения.

В таблице 2 представлены объединенные образцы
каждого сорта из-за низкого выхода ЭМ. Судя по преобла-
дающим компонентам, сорт Каприз относится к цитраль-
ному хемотипу, Лучано – линалоольному, а образец
№232/21 – метилциннаматному.

Результаты исследований содержания фенольных
соединений, в том числе флавонолов, в листьях базили-
ка, выращенного при различных вариантах LED-освеще-
ния, представлены на рис. 4-5. 

Рис. 3. Содержание x+c (мг/г сырого вещества) в листьях базилика при использовании вариативных режимов LED-освещения
(С:Б:К:Р). Разные буквы (a, b, c, d, e, f) указывают на статистически значимые различия (p<0,05) между вариантами (тест Тьюки)

Fig. 3. Сontent of carotenoids (mg/g of raw weight) in basil leaves using variable LED lighting modes (B:W:R:DP). Different letters (a, b, c, d, e, f)
indicate statistically significant differences (p<0.05) between the variants (Tukey test)
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Концентрация ФС в сортах O. × citriodorum Vis. Каприз,
Ocimum basilicum L. образец №232/21 и Ocimum basilicum L.
Лучано находилась в следующих диапазонах: 6,17-10,66,
4,05-5,38 и 5,19-7,90; флавонолов – 0,29-0,47, 0,18-0,25 и
0,21-0,31 соответственно. 

Полученные результаты свидетельствуют о том, что экс-
периментальные режимы LED-освещения влияют на состав
вторичных метаболитов в зависимости от сортовых особен-
ностей растений. Для линалоольного хемотипа базилика
(сорт Лучано) накопление ФС происходило при режимах

Таблица 2. Доля основных компонентов эфирного масла (ЭМ) в листьях базилика, %
Tab. 2. The proportion of the main components of essential oil (EO) in basil leaves, %

Компоненты ЭМ O. × citriodorum
Каприз Компоненты ЭМ O. basilicum

Лучано Компоненты ЭМ O. basilicum
образец №232/21

Estragole 12,25 1,8-Cineole 3,37 β-Ocimene 2,92 

cis-Citral 29,10 Linalool 44,76 Methyl cinnamate 86,58 

trans-Citral 42,41 Eugenyl acetate 16,31 α-Bergamotene 1,05 

Germacrene D 2,99 trans-α-Bergamotene 7,51 Germacrene D 1,46 

Рис. 5. Содержание флавонолов (мг-экв. КВ/г сырого вещества) в листьях базилика 
при использовании вариативных режимов LED-освещения (С:Б:К:Р). Разные буквы (a, b, c, d, e, f, g) 

указывают на статистически значимые различия (p < 0,05) между вариантами (тест Тьюки)
Fig. 5. Content of flavonols (mg-eq. GA/g of raw weight) in basil leaves using variable LED-lighting modes (B:W:R:DP). 
 Different letters (a, b, c, d, e, f, g) indicate statistically significant differences (p < 0.05) between the variants (Tukey test)

Рис. 4. Содержание ФС (мг-экв. ГК/г сырого вещества) в листьях базилика при использовании вариативных режимов LED-освещения
(С:Б:К:Р). Разные буквы (a, b, c, d, e, f, g) указывают на статистически значимые различия (p < 0,05) между вариантами (тест Тьюки)
Fig. 4. Content of phenolic compounds (mg-eq. GA/g of raw weight) in basil leaves using variable LED-lighting modes (B:W:R:DP). Different letters

(a, b, c, d, e, f, g) indicate statistically significant differences (p < 0.05) between the variants (Tukey test)
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освещения 25:70:25:25 и 50:80:25:50, характеризующихся
высокой долей красного света по сравнению с другими
вариантами. Напротив, при режиме с низкой освещен-
ностью (50:60:50:25) содержание флавонолов возрастало.
Цитральный хемотип базилика (сорт Каприз) отличался
самыми высокими концентрациями ФС и флавонолов, пре-
обладающих в варианте LED-освещения, характеризующе-
гося максимальной освещенностью (50:70:25:25). Однако,
наименее заметны были изменения в накоплении ФС у
метилциннаматного хемотипа базилика (образец
№232/21). При этом флавонолы преобладали в варианте с
максимальной освещенностью (50:70:25:25). Учитывая
содержание влаги (∼85%) в листьях, полученные данные
можно сопоставить с литературными [38; 40; 41; 44] (в
пересчете на мг/г сухого вещества). 

В ранее упомянутых исследованиях при выращивании
микрозелени базилика сорта Sweet Genovese (основной
компонент – линалоол) с использованием вариативного
светодиодного освещения общее содержание ФС варь-
ировало от 24 до 43 мг-экв. ГК/г [40], накопление наблю-
далось при высокой доле красного света, что совпадало
с полученными данными для растения в фазе бутониза-
ции сорта Лучано. При выращивании микрозелени бази-
лика сорта Kapoor (основной компонент – метилцинна-
мат) количество ФС находилось в диапазоне от 92 до
162 мг-экв. ГК/г [41], накопление наблюдалось при моно-
хромном синем излучении, аналогичная тенденция про-
слеживалась в результатах растений в фазе бутониза-
ции образца №232/21. При выращивали O. basilicum × O.
americanum (основной компонент – цитраль) в условиях
12-часового режима фотопериода с использованием
белого светодиодного освещения, характеризующегося
плотностью фотонного потока 300, 550 и 1350
мкмоль/м2/с, общее содержание ФС в листьях лимонного
базилика (возраст 42 дня) возрастало от 86 до 129 мг-
экв. ГК/г [44] с увеличением интенсивности облучения,
что соответствовало полученным данным для растений
в фазе бутонизации сорта Каприз.

В листьях O. basilicum L. (образец №8234), произрас-
тающего в естественных условиях, содержание флаво-
нолов было на уровне 0,71 [38], что значительно меньше
(∼в 2-3 раза) полученных нами данных в связи с условия-
ми выращивания. Преобладание флавонолов в конкрет-
ных режимах LED-освещения, а также появление тен-
денции с ФС, может быть связано с высоким уровнем
УФ-излучения и сортовыми особенностями растений
базилика [45].

Синтез ФС происходит из фенилаланина с участием
ферментов, регулируемых на различных уровнях, в том
числе активными формами кислорода (АФК), образую-
щимися в результате избытка света, и активностью све-
точувствительных транскрипционных факторов [16].

Преобладание фенилпропаноидных компонентов в
ЭМ – признак качества пряно-ароматических культур.
Однако выход эфирных масел может демонстрировать
низкую корреляцию с антиоксидантной активностью,
обусловленной, как правило, повышенным содержанием
ФС [46]. 

Заключение
Целенаправленное манипулирование спектральным

составом LED-освещения позволяет эффективно регули-
ровать биосинтез первичных и вторичных метаболитов в

листьях базилика (O. basilicum L. и O. × citriodorum) в
условиях интенсивной светокультуры. Комбинируя
светодиоды синего (С, 450–460 нм), белого (Б, 4000 K),
красного (К, 650–670 нм) и розового (Р, 400–800 нм)
спектра, удалось подобрать режим освещения с
«полезным» соотношением длин волн в видимом диа-
пазоне, что подтверждает универсальность LED-тех-
нологий для управления метаболизмом растений.

Режим 50:60:50:25 с высоким соотношением энерге-
тической облученности С:К (0,6) и С:З-Ж (1,3) длин
волн при низкой освещенности (5079 лм/0,5 м2) и плот-
ности фотонного потока (126 мкмоль/0,5 м2/с) обес-
печивал увеличение хлорофилла a (до 1,38 мг/г), хло-
рофилла b (до 0,36 мг/г) и каротиноидов (до 0,28 мг/г).
Тогда как режим 50:80:25:50 с низким соотношением
энергетической облученности К:ДК (10) длин волн при
высокой освещенности (6268 лм/0,5 м2) и плотности
фотонного потока (149 мкмоль/0,5м2/с) приводил к сни-
жению фотоситетических пигментов. По-видимому,
синий свет активирует экспрессию генов биосинтеза
хлорофилла, а избыточная энергия красного/дальнего
красного света индуцирует фотопротекцию и деграда-
цию пигментов.

Сортовые различия в стресс-ответе возникали из-за
природы преобладающих соединений в ЭМ растений.
Цитральный хемотип (O. × citriodorum Каприз) про-
являл наибольшую чувствительность: максимум ФС
(10,66 мг-экв. ГК/г) и флавонолов (0,47 мг-экв. КВ/г)
наблюдался при режиме 50:70:25:25 с высокой осве-
щённостью (6437 лм/0,5 м2), что указывает на актива-
цию фенилпропаноидного пути как защитной реакции
на фотоокислительный стресс. Линалоольный хемотип
(O. basilicum Лучано) накапливал ФС при режимах с
высокой долей красного света (25:70:25:25;
50:80:25:50), тогда как метилциннаматный хемотип
(образец №232/21) демонстрировал минимальные
колебания содержаний, подтверждая генетическую
устойчивость.

Растения испытывают меньший стресс при режиме
50:80:25:50, где накапливается небольшое количество
каротиноидов и ФС, что минимизирует избыточное
образование АФК и предотвращает активацию стресс-
индуцированных транскрипционных факторов.
Различия между сортами обусловлены генотип-специ-
фичной регуляцией фоторецепторов и антиоксидант-
ных систем.

Однако направленная стимуляция биосинтеза цен-
ных биологически активных соединений, в том числе
вторичных метаболитов, улучшает качество пряно-
ароматических культур. Под воздействием стресса
углеродный поток перенаправляется от биосинтеза
терпеноидов к производству фенольных соединений,
что вероятно приведет к увеличению антиоксидантной
активности и снижению выхода ЭМ. Можно предполо-
жить, что оптимальным LED-режимом для получения
высокого выхода ЭМ будет 25:70:25:25.

Таким образом, предложенные LED-режимы позволяют
направленно модулировать биохимический профиль бази-
лика, обеспечивая либо высокую антиоксидантную
активность (ФС↑), либо максимальный выход эфирного
масла (ЭМ↑). Полученные данные имеют прикладное значе-
ние для промышленного производства функциональной
растительной продукции с заданными свойствами.
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