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Introduction

he ecosystemic functions performed by the immuno-

genetic system of plants in agricultural landscapes
are a complex and poorly studied aspect of plant immunol-
ogy. Consequently, both strategies for creating plant geno-
types with certain traits and the strategies of their use
under the conditions of sustainably functioning agroe-
cosystem are understudied as well. Plants constitute the
basis of any ecosystem and have unique ecological rela-
tions with their environment. This determines their specific
biogeochemical activity and ability to transform the envi-
ronment making it suitable for heterotrophs such as phy-
tophagous and entomophagous insects, microorganisms,
and others populating a given ecosystem [1]. The immuno-
genetic features of both autotrophs and consumers of all
trophic levels are among the key mechanisms preserving
the stability in ecosystems [2]. According to the general
principles of immunology, the immunity of a particular
species manifests itself only in the process of interaction
between members of specific ecological systems in the
form of interaction among phenotypes [2]. The balanced
management of the phytosanitary state of agroecosystems
facilitates the stable production of high-quality and environ-
mentally safe products [3]. Any agroecosystem is a totally
new environment, which changes the species composition
and structure of animal communities, and most of all it influ-
ences insects [4]. The predominance of a single plant
species over a large area creates favorable conditions for
the multiplication of phytophagous insects and determines
their feeding specialization [5]. Besides causing direct
damage to agricultural plants while feeding on them, phy-
tophagous insects can be vectors of viral infections. A high
number of insect vectors in combination with optimal
weather conditions for the overwintering and further devel-
opment of imagines are the main causes of the damage
inflicted by plant viruses on agricultural crops [6]. The pota-
to ladybird beetle is the most dangerous pest of potato in
the Russian Far East. The insects appear on plants at the
germination stage and remain in the fields until harvesting
[7]. H. vigintioctomaculata is a vector of the potato viruses
that might lead up to a 60% yield loss. Viral infection accu-
mulates over time and can be transmitted to the next gen-
eration of plants via tubers. This results in the degeneration
of a given potato variety and might decrease its yield by 30-
80% [8, 9]. Moreover, it has been discovered that phy-
tophagous insects prefer to feed on diseased plants more
often than on non-infected ones [10-13]. However, there
are very few studies on the role of plant viral infection in
inhibiting the immune response of potato plants to the
damage caused by leaf-eating pests; the available data has
a fragmental character. This determined the goal of our
research.

Materials and methods

The research was conducted in an experimental field of
FSBSI “FSC of Agricultural Biotechnology of the Far East
named after A.K. Chaiki” in 2020-2023. The following vari-
eties of Russian and foreign breeding origin was used in the
experiment: Belmonda, Sante, Dachnyi, Yantar', Avgustin,
Yubilyar, Kazachok, Red Lady, Labella, Queen Anne,
Laperla, Smak, Lilly, Arktika, Svitanok Kievskii, Nakra,
Dal’'nevostochnyi, and Severnyi. Over the four years of our
research, the potato varieties were planted in the same
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experimental field and the planting material was not
renewed but harvested from that location. The research
assessed the progression of plant viral infection and the
degree of the damage caused by the potato ladybird bee-
tle to potato plants. The progression degree of plant viral
infection was evaluated by the number of plants with symp-
toms from the total number of the studied plants (%) at the
end of the germination stage, at the stages of bud develop-
ment and flowering, and before harvesting. The 10-point
scale established by the International COMECON List of
Descriptors for Tuberarium (Dun.) Buk. species of the
genus Solanum L. for evaluating virus resistance was used
to assess the disease progression on particular plants [14].
The degree of the damage caused by Henosepilachna vig-
intioctomaculata to potato plants was evaluated according
to Vilkova (2023) [15]. Potato variety Arktika was used as
the standard because phytophagous insects preferred to
feed on it.

RT-PCR was employed to check all the plants in the sam-
ples for viral infection. The presence of certain plant virus-
es in the samples was analyzed by one-step RT-PCR with
fluorescent detection in real time using a QuantStudio 5
amplifier (Applied Biosystems) and commercial kits
“Potato Virus X. Y. M. L. S. A — PB” (Syntol Llc), the
Phytoscreen series, designed for the identification of PVX,
PVY, PVM, PLRV, PVS, PVA, and PSTVd [16, 17]. The statis-
tical processing of the research results was performed with
Pastv.4.03 [18, 19]. The experimental data were visualized
using MS Exel.

Results

Mixed viral infection (viruses from mosaic group: PVY,
PVX, PVA, PVS, PVM; potato leaf roll virus, and potato spin-
dle tuber viroid) was found in an agroecosystem of the
potato field in Primorsky kray [20].

Our research established that the amount of plant viral
infection increased in potato plants with each subsequent
generation when potato was planted in the same field and
the harvest of the preceding year was used as planting
material. The epidemiological significance of the spread of
plant viruses via tubers is determined by the fact that even
a low initial amount of infection in seeds can increase
through the multiplication of plant viruses in tubers and
seeds with the successive transfer of those viruses to other
plant parts. The transmission of plant viruses via potato
tubers is important for the environment as well because it
allows viruses to survive in the time between growing sea-
sons [21]. According to our data, viral infection accumulat-
ed in potato tubers with each growing season —the average
degree of the damage caused to the studied potato vari-
eties was 1.1in 2020 and 3.6 in 2022. Over the three years
of our research, the influence of infected plant material on
the manifestation of plant viral infection was the highest in
potato varieties Belmonda, Sante, Dachnyi, Yantar’,
Avgustin, Yubilyar, Kazachok, Red Lady, Labella, and
Queen Anne. The degree of damage increased with every
growing season. The progression of plant viral infection
decreased slightly on varieties Laperla, Smak, and Lilli in
the second year of the research compared to 2020 and
then increased drastically in 2022. Variety Belmonda dis-
played very few visual symptoms of plant viral infection in
2020; however, the performed PCR discovered latent viral
infection in the tubers and other plant parts of this variety.
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Fig.1. Progression of plant viral infection on the studied potato varieties (on a point scale) [22]
Puc.1 lNoepexdeHue copmoe kapmogbesisi gpumoesupycHoli uHghekyuel (oyeHka 8 basnax) [22]

The same results were obtained for varieties Avgustin and
Red Lady. Thus, the plant viral infection accumulated in
tubers and led to an increase in the number of plants with
visual symptoms in every subsequent growing season [22]
(Figure 1). Our data are in agreement with the findings of
Lapshinov N.A. (2010), whose field experiments demon-
strated that viral infection accumulated in subsequent plant
generations in most cases. For example, the degree of the
damage caused by PVY, PVX, and PVM to potato plants in
his research increased by 0.4-3.8% compared to the pre-
ceding year [23].

The manifestation of viral infection on potato leaves
depends on the resistance of a particular variety.
Susceptible varieties develop localized and systemic symp-
toms due to the multiplication and spread of viruses inside
plants. Tolerant genotypes show very weak or no visual
symptoms. The result of an interaction between a plant
virus and a plant depends on the potato genotype, the envi-
ronment, and the strain of the virus. Potato varieties have
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different genetic bases, which produce different responses
to viral infection [24].

Itis well known that viruses are transmitted from diseased
plants to healthy ones mainly by insect vectors [23, 21].
Infected plants are able to affect the behavior of insect vec-
tors and make pests to feed on their diseased tissues more
actively. The behavior of viral vectors and their choice of fod-
der plants depend both on the visual and attraction signals
of plants [21]. According to our data, the potato ladybird
beetle is the main vector of potato viruses in Primorsky kray
[25]. It should be noted that that potato ladybird beetles did
not choose potato plants of variety Belmonda for feeding in
the first year of our experiment. The lesions caused by the
pest were rarely found on plant tissues and the symptoms of
plantviral infection were observed only around the bites. The
degree of the damage was 4.5 points on varieties Smak,
Yubilyar, and Yantar’, and 3.2 points on variety Laperla.
These varieties had the most advanced progression of viral
infection as well (Figure 2).
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Fig. 2. Manifestation of plant viral infection on the studied potato varieties and the degree of insect damage (2020)
Puc. 2 lNposieneHue cumnmomos eupycHol uHghekyuu u 6an nospexoeHusi HaCeKOMbIMU Ha copmax kapmodgbessi (2020 200)
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Plant viral infection accumulated in potato tubers over
the second and third year of the experiment (2021 and
2022). As a result, the number of plants with visual symp-
toms of viral infection increased and the immunity of plants
reduced. Thus, the inhibition of the immune response of
potato plants to the damage caused by the potato ladybird
beetle was observed. Even those potato varieties that ini-
tially had not been preferred by the pest became more
attractive for the phytophagous insect in successive years.
For example, variety Belmonda did not display any symp-
toms of plant viral infection in 2020 and was not preferred
by the pest in 2021. However, the potato ladybird beetle
was observed to actively feed on variety Belmonda after the
progression of mixed viral infection reached two points dur-
ing the growing season of 2022. The potato ladybird beetle
did not feed on varieties Svitanok Kievskii, Nakra,
Dal’'nevostochnyi, and Severnyi in 2022 and these varieties
were found to have only latent viral infection. The control
variety Arktika had a damage degree of three points (Figure
3). In 2023, there were visual symptoms of mixed viral
infection on plants and their immunity to phytophagous
insects, particularly to the potato ladybird beetle, reduced.
The progression of plant viral infection on variety Svitanok
Kievskii reached four points and the degree of the damage
caused by the potato ladybird beetle was 1.2 points. Viral
infection progressed to about two point in varieties Nakra
and Severnyi and the damage degree was about one point.
Variety Dal'nevostochnyi was the least susceptible to plant
viral infection and the degree of the damage caused by the
phytophagous insect was minimum as well (Figure 3).
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Fig. 3. Progression of plant viral infection and the degree of the
damage caused by phytophagous insects in 2022 and 2023
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To verify the correlation between a decrease in the
immune response of potato plants to the damage
caused by leaf eating insects and an increase in the
amount of the plant viral infection accumulated in
those plants, we performed a correlation analysis
according to Pearson. The Pearson correlation coeffi-
cient was 0.6873 demonstrating a high positive corre-
lation, which revealed a tendency for the degree of
the damage caused by phytophagous insects to
increase depending on the amount of viral infection in
potato plants. This was confirmed by a high coeffi-
cient of determination (0.4724). This might be con-
nected to the activation of specific protective mecha-
nisms, which in their turn affect the concentration of a
virus in the organs of a host plant [26]. Viral infection
significantly changes the metabolism of plants and
reduces their photosynthetic activity suppressing the
carbohydrate metabolism and other metabolic
processes. Chloroplasts degrade, change, or are
aggregated due to viral infection; this leads to the
destruction of chlorophyll or its non-involvement in
the synthesis. The degree to which photosynthesis is
suppressed depends largely on the disease progres-
sion and the characteristics of a virus strain and a
host plant as well as the environmental conditions
[27]. When a plant is infected, a coordinated interac-
tion of regulatory signal pathways can be observed.
This results in the expression of resistance genes and
the strengthening of plant protection against
pathogens. Studying the mechanisms of antiviral pro-
tection in plants has shown that when an infection is
present these mechanisms activate the genes that
produce PR proteins, which are the proteins related
to pathogenesis. The accumulation rate of PR pro-
teins depends on the character and degree of the
damage caused to plants. Some PR-proteins such as
proteinases and p-1.3-glucanases facilitate the infec-
tion of plants by viruses. Other PR-proteins such as
the inhibitors of proteinases, ribonucleases, and per-
oxidases, effectively protect plants against viruses
[28]. The properties of viruses, their response to the
presence of resistance genes in plants, and the inter-
actions among vectors as well as the combination of
the abovementioned factors in the epidemiological
structure form the conception of plant viral infection
management [26].

Thus, our research discovered a decrease in the
immune response of potato to leaf-eating insects due
to the accumulation of plant viral infection without the
renewal of planting material. The planting material
was not renewed in our experiment and the concen-
tration of plant viruses rose in an agroecosystem
increasing the amount of additional plant viral infec-
tion and facilitating the secondary infection of potato
plants. The plant viral infection inhibited the immune
response of potato plants to the damage caused by
leaf-eating insects. As a consequence, the varieties
that had not been susceptible to pests became less
resistant to phytophagous insects. All these factors
might be counted among the causes of the develop-
ment of epiphytotic situations.
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