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Previously, surface soil acidity was amended by the application of lime, gypsum, and
acidic soil-tolerant crop species. However, their effectiveness in subsurface soil
acidity reduction is limited. Thus, this review paper aimed to screen the tree species
that easily overcome such problems. Scopus, Science Direct, Google Scholar,
African journals online, and Google search engine databases were used. A total of 60
acidic soil-tolerant tree species were identified. Acacia auriculiformis, Acacia crassi-
carpa, Arbutus unedo L., Casuarina junghuhniana, and Erythrina abyssinica were
among the extremely acidic soil-tolerant tree species. Whereas Acacia cincinnata,
Acacia mangium, Pinus patula, Albizia saman, Citrus x paradisi, and Cassia reticula-
ta were belongs to some of the strong acidic soil tolerant tree species. Generally, the
species' acidic tolerance capacity and planting site compatibility should be consid-
ered for the success of amendment works. Scaling out these species and large-scale
plantations should be done in addition to estimating their relative percent of acidic
soil amendment roles. Producing stable food in line with reclaiming acidic soil is
achieved through the integration of stress tolerant fruit trees. Research on large-
scale plantations, domestication, skilling up and comparative evaluation of their lev-
els of acidic soil amendment capacity should be performed in the future.

Agroforestry; Fruit, Legumes tree; pH; subsurface soil acidity

PaHblue NoANOBEPXHOCTHYIO KUCIIOTHOCTb MOYBbI KOPPEKTUpPOBanu nyTeM BHece-
HUSA U3BECTH, rMNca 1 KACIbIX NOYBOYCTOMYUBLIX KynbTyp. OgHako ux acdekTus-
HOCTb B CHWXXEHUM KMCNOTHOCTU NOYB orpaHnyeHa. Takum ob6pasom, Liernib JaHHOro
ob630pa — oTo6paTh Nopoabl AepeBbLEB, KOTOPbIE JIETKO NpeoaosieBatoT NOA0OHbIe
npobnembl. BbinM ucnonb3oBaHbl UCTOYHUKM Scopus, Science Direct, Google
Scholar, acdpukaHckue OHMaMH-XypHanbl U 6a3bl AaHHbIX MOUCKOBLIX CUCTEM
Google. Bcero BbisiBneHo 60 BMAOB AepeBbeB, YCTOWYUBLIX K KUCHbIM MOYBaM.
Acacia auriculiformis, Acacia crassicarpa, Arbutus unedo L., Casuarina
junghuhniana v Erythrina abyssinica oTHOCUNIUCb K YMCIYy Ype3BbIYaHO YCTONYM-
BbIX K KACJIOTHOCTU NMOYB BMAOB AepeBbeB. B To Bpemsa kak Acacia cincinnata,
Acacia mangium, Pinus patula, Albizia saman, Citrus x paradisi v Cassia reticulata
npuHagnexanu K BUaaMm AepeBbeB, YCTOMUYMBBLIM K CUNbHO KUChbIM noyBam. Kak
npaBuIo, AnA ycnexa KoppekTUpyowmx padboT cneayeT y4UTbiBaTb KUCNIOTOYCTOM-
YMBOCTb BMAA M COBMECTUMOCTb C MECTOM Mocafku. YBenuyeHue v 3aknagka Kpyn-
HOMacwWTabHbIX NNaHTauun NNoAoBbIX AepeBbeB AOIKHA OCYLECTBAATLCA C yye-
TOM OLEHKM MX OTHOCUTENBbHOW PONW KakK yny4lwuTernen KACIOW NOYBbl. Takum
obpa3omM, NpPou3BOACTBO CTaOUIIbHbLIX NMPOAYKTOB MUTaAHUA M BOCCTaHOBIEHUE
KMCION NOYBbl OCTUraeTCcA 3a cYET BbipaliMBaHUA YCTOWUYMBBIX K CTpeccy niogo-
BbIX AepeBbeB. B 6yayliem gomkHbl 6bITb NpoBeAeHbl UcCrieAoBaHMsA KpynHomac-
WTAOHbIX NNaHTauun, UHTPOAYKLMM U CPpaBHUTENbHas OLleHKa UX YPOBHSA cnoco6-
HOCTM yny4waTb NoyYBy.

Arponecomenuopauus; nnoaoBble AepeBbA; 6060BbIe AepeBbs; pH; noanosepx-
HOCTHas KMCIIOTHOCTb MOYBbI
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n rain fed agricultural areas, the absence of diversified

livelihood assets boosted the forest-to-agricultural area
conversion process. Such anthropogenic factors, along with
the associated natural events, cause substantial soil acidifica-
tion on land [1]. Alvarez, Gimenez [2] reported that soil acidi-
fication may result from acid parent materials, leaching of
basic cations (calcium (Ca?*), magnesium (Mg?*'), and potas-
sium (K*), hydrolysis reactions within soil exchange sites, rain-
fall containing nitric and sulfuric acids, cations absorbed by
the crop over the course of long-term cultivation, removal of
crop residue, and the addition of soluble salts and fertilizers
(mineral and organic). Generally, the worry of soil acidification
can be seen from different angles. Reduction of land produc-
tivity, change in vegetation cover, global warming, and migra-
tion are the major perspectives that express the conse-
quences of acidification. Increasing acidification on land influ-
ences the essential mineral absorption capacity of tree and
crop root systems, resulting in vegetation cover reduction.
Land productivity is strongly influenced. Unable to sustain
food and feed production later on influences the health sys-
tem of people and other living organisms. Therefore, famine
occurred, and the migration of living organisms to other areas
occurred. In addition to this ending of poor acidic soil man-
agement, the area will be exposed to desertification since the
vegetation cover is strongly influenced (degraded). Once
erratic rainfall occurs in those areas, the remaining minerals
are easily leached by floods and create higher sedimentation
on the riverbank. The Accommodation of large sedimentation
reduces the sea level water content and aggravates the emis-
sion of carbon dioxide, which was previously stored at sea
level, to the atmosphere. The process finally creates global
warming. Areas covered by acidic soil vary across the conti-
nent. For instance, in tropical regions, which are the largest
agricultural production area, 43% of the land is covered by
acidic soil [3]. Sumner and Noble [4] reported that the total
topsoil acidic area of the world is approximately 30% (3.777 to
3.95 billion ha) of the total ice-free land area. They also report-
ed that 22% of the total land of Africa (3.01 billion ha) is
exposed to acidic soil. In Ethiopia, 47% of the total and 45%
of the rainfed area of land is covered by the most hazardous
acidic soil [5, 6]. The cultivated to the total area of the above
mentioned continent is much lower than the acidic areas. The
extent of acidity in the total and rainfed lands of Ethiopia was
categorized as extreme to strong, moderate, and slight. In the
rainfed agricultural areas of Ethiopia, the extreme to strongly
acidic (higher concentration of hydrogen ions H+ in the soil)
soil cover area is twice its content in the total area of the coun-
try [6]. To avoid the above mentioned consequences, differ-
ent acidic soil amendment techniques were implemented in
the different parts of the country. The application of lime
(CaCO03) and acid-soil-compatible microbes, Al-tolerant crop
genotypes, and gypsum are among the most commonly used
acidic soil amendment techniques [7-9]. Liming is well known
to reduce surface soil acidity, although it increases soil pH,
native phosphorous, and molybdenum [10, 11]. Subsurface
soil acidity, which occurs in a soil zone of 10-35 cm due to alu-
minum toxicity, is not easily reduced via the application of
lime, gypsum and other usual treatments. Leaving this area
free from any activity without amendment practice couldn’t
reduce the content of acidity. It rather aggravates the expan-
sion rate to other nearby area. Its impact on reducing vegeta-
tion cover of less tolerance species and land productivity

enhances unless appropriate amendment techniques applied
on time. To overcome such problems, deep banding lime
treatment has been implemented in different areas [12-14].
However, such practice is cost demanding and needs addi-
tional skill. As a result, sustainable and cost-effective surface
and subsurface soil acidity amendment options are needed.
Thus, this review focuses on the screening of various tropical
acidic soil-tolerant species for future skilling-up and domesti-
cation-based research work. This is claimed by Nair, Kumar
[15] in that there is little availability of surface and subsurface
acidity in the forest and coffee landscape as compared to rub-
ber and coconut land use practices. Abure [16] reported that
acidity of soil under home garden was better than eucalyptus
plantation land use. This indicated that proper species
screening for acidity amelioration technique is pertinent
issues.

Formerly published data were used. Databases such as
Scopus, Science direct, Google scholar, African journals
online and Google search engines were used. Hand picking,
citation and reference tracking manual searching techniques
were used to compile relevant published papers. Papers that
were published in English language alone were used. To avoid
missing relevant information and compiling sufficient evi-
dence, the timeline of publication was not considered.

There are three main categories of soil based on textural
size: small-sized clay, medium-sized silt, and larger-sized
sandy soil. The class's sandy-textured soil types are primarily
known for their acidity. Clay-textured soil types, on the other
hand, have a high alkaline content. Acidity growth is con-
strained by the ecology and the type of soil. Among the 12 soil
orders, acidity is more frequently occur in Oxisols in Africa
and Ultisols in South America. According to Sanchez P.A. et
all. [17], Oxisols and Ultisols make up roughly 43% of the trop-
ics. Around 205 million hectares, or 23% of the nation, make
up the tropical savannah known as the cerrado in central
Brazil. Because of their high aluminum saturation, high P fixa-
tion capacity, and low natural soil fertility, the majority of the
soils in this region are Oxisols (46%), Ultisols (15%), and
Entisols (15%) [18]. Acidity varies across agro ecological
zones. Factors like parent material, climate variability, vegeta-
tion cover type, drainage type, organic matter content, weath-
er of rocks, management practice and other agricultural activ-
ity influence the extent of acidity across Agroecology [19-21].
Volcanic soil dominated highland and coastal lowland ecology
have higher level of acidity than other areas [22-25]. The plant
root required favourable soil nutrient content besides other
essential things for their growth and development. The
absence of nutrient or essential element toxicity or deficiency
and active and abundant relevant microorganisms activities
directly influence the plant root growth and development. In
areas with higher level of aluminum toxicity, the root tip’s cell
elongation and division is inhibited[26]. In other words, it cre-
ates unfavourable environment for bacteria, earth warm and
other essential microorganisms besides leaching of essential
nutrients below the root zones of the plant. In such cases the
plant root water and other essential nutrient uptake capacity
reduces significantly. This creates the critical role in their



development and reproduction rate. Thus, the species diver-
sity and abundance in particular and species composition in
general in acidic soil dominated area reduces as compared
with other fertile soil area [27, 28].

Increases in crop yields have been shown to dramatically
lower poverty and enhance food security. A number of fac-
tors, including technological ones (managing decisions, agri-
cultural practices or tillage system etc.), biological ones (crop
verity, diseases, insects, pests, weeds), and environmental
ones (climatic conditions, soil fertility, acidity, salinity, alka-
line, topography, water quality, etc.) can affect yield, or the
mass of harvested crop product in a given area [29-31].
Acidity is influence crop and vegetation growth across soll
types. Combining such factors with acidity strictly declined
the crop yield and exposed the community for conical famine
season. Crop requires favourable phosphorus and other
essential elements. In acidic soil areas’ the tillage system
influence these essential nutrients. In a 19 years study,
Calegari, Tiecher [7] found that, up to 10 cm of soil depth,
proper liming and other soil management techniques provid-
ed better acidity, P, and K availability for winder crop species
growth in no tillage systems than in conventional tillage sys-
tems. They also reported that below a depth of 10 cm, lime
treatments in small amounts on the soil’s surface were inef-
fective in mitigating the hazards of aluminum. Their findings
indicate that applying lime to the soil surface on a regular
basis under the no tillage system for crop yield improvement
can only be a feasible substitute tactic if the subsurface's
acidity and aluminum toxicity have been previously eradicated
by applying a sufficient quantity of lime and blending it with
the growing layer. Crop growth is greatly impacted by low soll
pH, which lowers vyield. According to Ngoune Tandzi,
Mutengwa [32] soil acidity in maize can result in up to 69%
yield loss. The maize (Zea mays L.) grain yield negatively cor-
related with the level of acidity [31, 33-35]. For instance,
Hayati, Sutoyo [33] find out that the mean maize yield
obtained in acidic soil was 38 times lower than the control
environments.

Liming or Working horse of crop [36], gypsum, coffee husk
manure, acid resistant cover crops, organic matters and
dolomites are some of the main methods we use to treat acid
soil. By increasing the availability of calcium and magnesium,
enhancing microbial activity, increasing plant nutrient uptake
efficiency, and lowering phosphorus immobilization, solubili-
ty, and heavy metal leaching, liming improves soil structure
and lowers acidity [8, 24, 31, 36]. Though liming has such
importance, its acidity or Al toxicity reduction capacity is limit-
ed until 10-20 cm soil depth alone during the first three suc-
cessional years of its application [37]. Therefore, amending
subsoil acidity with liming alone requires so long year and
other techniques like gypsum and deep ripping. The extreme-
ly slow vertical and lateral movement of lime in the usual soil
disturbance (small window) in deep ripping using tyne of 5 to
8 cm width results to big amounts of untreated soil [38].
Because of this, it seems unlikely that the subsurface acidity
constraint will be lifted quickly. More research is necessary to
determine whether complete tillage at depth is a feasible solu-
tion for subsoil acidity amendment as claimed by Li [39]. He

also reported that In the short term, the alkalinity in the lime
may move downward more easily when combined with organ-
ic materials. Nevertheless, over time, nitrification brought on
by the heavy application of organic materials may cause the
soil to become acidic.

Gypsum is applied to reduce Al toxicity and raise Ca?*lev-
els in the subsoil. The latter result has been linked to SO43
’s involvement in either Al precipitation [36]. However, its
usual treatment slowly reduces the subsoil acidity. Another
treatment was used to rapidly ameliorate subsoil acidity.
Accordingly, Oates and Caldwell [40] reported, that using
hydrofluorogypsum and phosphorgypsum gypsum by-
product in place of the standard gypsum treatments were
considerably and quickly reduced subsoil acidity because
of the fluoride impurity found, which have an amount of 21
cmol(+) per kg of KCI- exchangeable Al. Applying gypsum
to acid Andosols seemed to be more effective when soil
humus contents and minor variations in soil pH levels were
taken into account. This also resulted in a decrease in Al
release rates when the consistent segmentation method
was employed [41]. Generally, the use of inorganic acidic
soil amendment techniques in a sustainable way request
huge capital. The better less costly and sustainable crop
production option in acidic soil dominated area needs fur-
ther research. In the long and short run the use of acidic
soil tolerant tree species better reclaimed the aluminium
toxicity and level of soil pH in sustainable and cost efficient
ways.

Generally, techniques used in microbial biotechnology
are derived from the organic interactions found in ecosys-
tems. Rhizobacteria, one type of bacteria that is particular-
ly important for plant growth, offer agricultural crops a
counterbalance to the detrimental effects of abiotic stress,
such as those brought on by salinized environments [42].
Microbial communities have developed a variety of
defences’ mechanisms to address numerous environmen-
tal obstacles. Because their survival and growth depend on
quick, insufficient control over genetic expression and
metabolic reactions, bacteria must be dynamic to over-
come such unfavourable conditions [43-45]. Certain
members of the diverse microbial populations can thrive
in settings that are strictly unacceptable, while others
may suffer negative consequences. A significant rise in
expression occurs when bacteria are exposed to
unfavourable conditions such as heat, heavy metals,
salt, and nutritional shortages, among others [46]. A few
of the diverse microbial populations can survive in com-
pletely unfavourable environments, while others are nega-
tively impacted under stressed conditions. When bacteria
are exposed to harsh environments such as heat, heavy
metals, salt and nutrient limitations, their expression level
skyrockets. The highly acidic environment is another sig-
nificant unfavourable factor that inhibits bacterial growth.
However, rhizobia species have evolved mechanisms to
cope with such harmful environmental factors, and pro-
teomics can help identify the proteins responsible for tol-
erance to high acidity[46]. Most legume agroforestry
species are well adapted in stress-dominated areas. The
presence of arbuscular mycorrhizal fungi in legume tree
species allows them to adapt and grow well in stress-like
acidity, salinity, and alkaline tropical areas [46].
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Table. The acid-tolerant multipurpose tree species

Scientific Name
of species

Acacia auriculiformis
Acacia cincinnata
Acacia crassicarpa
Acacia koa A.Gray
Acacia mangium

Acacia mearnsii De Wild.
Acer pseudoplatanus L.
Albizia lebbeck

Albizia saman

Annona squamosa*
Arbutus unedo L.*
Azadirachta indica
Betula pendula
Calliandra calothyrsus
Calliandra calothyrsus Meisn.
Cassia abbreviate
Cassia reticulata
Casuarina junghuhniana
Citrus aurantiifolia*
Citrus limon*

Citrus sinensis*

Citrus x paradisi*
Delonix regia

Dialium guineensis
Dodonaea viscosa
Eneste ventricosum
Enterolobium cyclocarpum
Erythrina abyssinica
Erythrina variegate L.
Fagus sylvatica L.

Ficus Carica*

Flemingia macrophylla
Fraxinus excelsior L.
Gliricidia sepium
Harungana madagascariensis
Inga edulis*

Japanese Maples (Acer palmatum)
Juniperus horizontalis
Leucaena leucocephala
Liquidambar styraciflua
Malus domestica*
Mangifera indica*
Mimosa scabrella

Oxytenanthera abyssinica A.Rich.

Paraserianthes falcataria
Persea americana*
Pinus patula

Pinus strobus
Pithecellobium dulce
Prunus persica*

Prunus persica var. nectarine*
Pterocarpus indicus
Pyrus communis L.*
Punica granatum L.*
Quercus palustris
Sinorhizobium medicae
Taxodium distichum
Tetrapleura tetraptera
Vachellia abyssinica
Vitellaria paradoxa*

Suitable
pH(H20)

range

3-9
4-5
3.4-5.4
4-74
4.5-6.5
5-6.5
5-8
9.5-7.5
4.6-7
6.5-8
3-7.2
5-8
4-5
4.5-6.5
4.5-6.5
5.5-6.9
4.2-47
2.8-8
5-8
5.5-6.5
6-8
4.3-8
4.5-7.5
5-7.5
4.5-8.5
5-7.5
4.5-8
3.5-5.5
4.5-8
3.5-8.0
5.5-6.5
4-8
5-8.
4.5-6.2
5.5-6.5
4-8
5.5-6.5
4-6
6-7
5-74
5.5-7
SHET/ )
4.8-5.1
5-6
5.5-7
5-7
4.5-5.5
4.5-6.5
5!5:-7:5
6-6.5
5.5-6.5
5-7.5
5-6.5
5.5-7.2
5-7
5-7
5.5-6.8
4-7
5-7.5
5.5-8

Reference

[48-50]
51, 52]
[51-53]

[54]
[51, 52, 55, 56]
[57]
[58-61]
[52]
[52]
[62]
[63-66]
67, 68]
69, 70]
152, 71, 72]
(52, 73, 74]
52, 75]
[76]
[52]
[77]
78, 79]
[52]
[80]
[81]
[73]
[82]
[83]
[52]
[84]
[52]
[85-87]
[88]
[52]
[89]
[90-92]
[73, 93, 94]
[98]
[96]
[97]
[76]
[98, 99]
[100, 101]
[102]
[52]
[103]
[104]
[105, 106]
[107, 108]
[109]
[110]
[111]
1111, 112]
[110]
[113]
[114]
[115]
[116-118]
[119]
[73]
[52]
[120]

* indicated that the palatable fruit produced species

The logarithm of a solution’s reciprocal of its hydrogen
ion concentration is known as pH. Practically speaking, pH
is the relative acidity or alkalinity of a solution. The pH scale
ranges from 0 to 14, with 7 denoting a neutral pH. Coffee
(pH=5) and grapefruit juice (pH=3) are typical examples of
acidic solutions, whereas saltwater (pH=8) and oven clean-
ing (pH=13) are typical alkaline solutions. Potential of
Hydrogen (pH) is significant in soils because it affects the
availability of essential nutrients for plants. When the pH
rises, some soil nutrients, such as iron and manganese,
become less available.

Chesworth [47] reported that four (extremely acidic
(0<pH<4), strongly acidic (4<pH<5), moderately acidic
(5<pH<B6), and slightly acidic (6<pH<6.5)) categories of soll
acidity were observed in agricultural landscapes. Taking into
account these classifications, the identification of acidic soil-
tolerant tree species was summarized. In this review paper, a
total of 60 tree species were identified. Tree species Acacia
auriculiformis, Acacia crassicarpa, Arbutus unedo L. (from
fruit tree), Casuarina junghuhniana, Erythrina abyssinica, and
Fagus sylvatica L. were identified as extremely acidic soil-tol-
erant tree species. 45 percent of the identified species
(Acacia auriculiformis, Acacia cincinnata, Acacia crassicarpa,
Acacia koa Gray, Acacia mangium, Albizia saman, Arbutus
unedo L., Betula pendula, Calliandra calothyrsus, Calliandra
calothyrsus Meisn., Cassia reticulata, Casuarina junghuhni-
ana, Citrus x paradisi, Delonix regia, Dodonaea viscosa,
Enterolobium cyclocarpum, Erythrina abyssinica, Erythrina
variegate L., Fagus sylvatica L., Flemingia macrophylla,
Gliricidia sepium, Inga edulis, Juniperus horizontalis, Mimosa
scabrella, Pinus patula, Pinus strobus and Tetrapleura
tetraptera) were able to grow in strongly acidic soil conditions
(Table). All the listed species have direct and indirect ecosys-
tem services (provision, regulation, cultural and support serv-
ices). Of the screened species 16" were fruit tree species.
Three of them (Arbutus unedo L., Citrus x paradisi and Inga
edulis) can withstand a strong acidic soil (Table).

Soil is a vital component for the growth of tree species.
Inappropriate management of this essential resource
reduces land productivity. Overutilization of inorganic fertiliz-
er enhances the acidity level of surface and subsurface soil.
A combined application of lime, gypsum and acidic soil-toler-
ant crop species is an essential tool for the amelioration of
surface soil acidity. Reducing inorganic input and producing
crop sustainably required other alternatives. Overall soil
acidity (surface and subsurface acidity) is amended sustain-
ably and is environmentally friendly at a high cost through
the proper alignment of acidic soil-tolerant legume tree and
fruit tree species with specific levels of acidic soil areas.
Generally, planting the species (Acacia auriculiformis,
Acacia crassicarpa, Arbutus unedo L., Casuarina junghuhni-
ana, Citrus x paradisi, Erythrina abyssinica and Fagus sylvat-
ica L.) that have the ability to absorb and recycle the subsur-
face mineral extreme acidic soil dominated area should be
the priority issue for land managers. Producing stable food
in line with reclaiming acidic soil is achieved through the inte-
gration of stress tolerant fruit trees. Research on large-scale
plantations, domestication, skilling up and comparative eval-
uation of their levels of acidic soil amendment capacity
should be performed in the future.
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