УДК635.658:631.531.01

БИОЛОГИЯ ФОРМИРОВАНИЯ И ПРОРАСТАНИЯ СЕМЯН УКРОПА

Балеев Д. Н. – кандидат с.-х. наук, н.с. отдела Семеноводство и семеноведение **Бухаров А. Ф.** – доктор с.-х. наук, зав. лаб. Селекция капустных культур

ГНУ Всероссийский НИИ овощеводства Россельхозакадемии 140153, Московская обл., Раменский р-н., д. Верея, стр. 500. Тел. (495)558-45-22 E-mail: baleev.dmitry@yandex.ru

Архитектоника семенного растения укропа, степень зрелости семян определяют линейные размеры зародыша, оказывая существенное влияние на явление покоя, скорость доразвития зародыша и основные параметры качества семян, отвечающие за их прорастание.

Ключевые слова: прорастание, покой семян, зародыш, температура проращивания, степень зрелости, укроп

Введение

рорастание семян является одним из основных проявлений жизнедеятельности растений и предметом многочисленных исследований. Накопленные знания по этому вопросу, казалось бы, дают четкое представление о том, что происходит в процессе прорастания семени: клетки поглощают воду, активируются ферменты, генерируется энергия для синтеза и инициируются ростовые процессы. Однако многие кардинальные аспекты процесса прорастания все еще неясны. Одним из них является покой семян и факторы, обуславливающие его возникновение, глубину и выход из этого состояния.

Покой семян представляет собой распространенное и очень важное приспособительное свойство растений, способствующее конкурентоспособно-

сти, сохранению и распространению вида. Явление покоя возникло в процессе эволюции. У растений выработалась особая реакция на окружающие условия, которая предохраняет их от прорастания в неблагоприятные периоды года [7].

Одной из причин возникновения покоя семян является морфологическое недоразвитие зародыша, ярко проявляющееся у многих представителей зонтичных. Влияние внешних условий на прорастание семян, характеризующихся морфологическим недоразвитием зародыша, изучено в недостаточном объеме. У многих растений умеренного климата независимо от времени созревания семян на материнском растении доразвитие зародыша не происходит. Этот процесс протекает уже после отделения семени, если оно попадет в условия достаточной влажности и благоприятной температуры. У большинства растений умеренного климата зародыш наиболее успешно растет в диапазоне температур от 15°C до 30°C [2]. В некоторых случаях для роста зародыша необходимы положительные пониженные температуры [7, 8].

Поэтому изучение особенностей формирования семян культивируемых растений с недоразвитым зародышем, влияния сроков их сбора и условий проращивания, очень важно для контроля посевных качеств семян и создания высокопродуктивных посевов.

Цель наших исследований: изучить влияние степени зрелости на доразвитие зародыша и прорастание семян укропа при различных температурных режимах проращивания, используя методы макро-, микроскопии, биометрии и математико-статистический анализ.

Методика

Исследования проводили в ГНУ ВНИИО. Объектом исследований служили семена укропа сорта Кентавр разной степени зрелости и порядков ветвления. Наблюдения за ростом зародыша во время формирования семян вели путем взятия систематических проб через каждые 5 суток, начиная с достижения 30-суточного возраста семян. Зонтики срезали целиком и в тот же день in vivo проводили измерения длины зародыша.

Изучение динамики прорастания семян укропа с разной степенью зрелости проводили на разных температурных фонах, в т. ч.: $t = 20^{\circ}C$ (st); $t = 3^{\circ}C$; t = 3/20 °C. Число суток до наступления максимальной скорости прорастания семян рассчитывали по G. Gassner [6].

Измерения длины зародыша во время прорастания проводили с помощью микроскопа «Микромед» при 40-крат-

ном увеличении, с использованием программы Scope Photo. Повторность опыта трехкратная, в каждой повторности исследовали не менее 10 шт. плодов. Статистический и математический анализ осуществляли с использованием методики Б. А. Доспехова [3] и пакета программ Statistica 8.0.

Результаты исследований

У многих видов зонтичных определенный процент плодиков содержит в той или иной степени недоразвитые зародыши, вплоть до зародышей, у которых обнаруживаются лишь зачатки семядолей. Причины такого неодинакового развития зародышей и до настоящего времени остаются неясными [5].

Одной из причин недоразвития зародышей в плодиках одного соцветия могут быть особенности развития семяпочек в завязях, которые занимают различное положение в соцветии, что отражается на поступлении питательных веществ к плоду [5]. По данным Л.Л. Еременко, проводившей свои исследования на моркови [4], линейное развитие зародышей происходит с неодинаковой скоростью в разных частях соцветия. Она отмечает, что такое различие стирается при созревании семян. Более быстрое развитие зародышей в семенах моркови отмечает И. В. Грушвицкий с сотрудниками [1], однако он считает, что разнокачественность по длине зародышей сохраняется и при наступлении полной спелости семян.

Исследования плодов укропа из зонтиков различных порядков показывают, что наибольшая длина зародыша отмечена у семян, собранных с зонтиков первого порядка. Несколько ниже в зонтиках второго порядка.

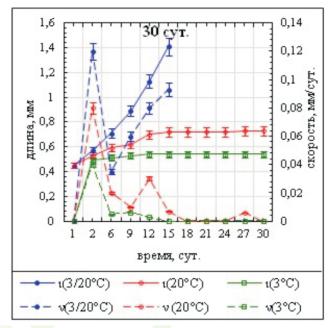
В пределах зонтика длина зародыша также различна (табл. 1). Длина заро-

дыша в семенах отдельно взятого сложного зонтика была различна, изменяясь в зависимости от месторасположения и этапа развития. Если при анализе 30 – суточных семян выявлено, что линейные размеры зародышей в центральных зонтичках были больше, чем в краевых зонтичках: на 0,06 мм у зонтиков 1 порядка и на 0,03 мм у зонтиков 2 порядка, то к моменту созревания, у 50-суточных семян размеры зародышей в семенах крайних зонтичков оказались выше.

При созревании семян происходило постепенное выравнивание по длине зародышей крайних и центральных зонтичков, а при достижении восковой спелости (50 сут.) длина зародышей из семян крайних зонтичков на 0,03 мм превышала длину зародышей из центральных зонтичков и составляла 0,80 мм. Рост зародышей в семенах с соцветий 2 порядка происходил аналогичным образом. Однако следует отметить меньшую длину зародышей на протяжении всего времени формирования семян по сравнению с соцветиями 1 порядка.

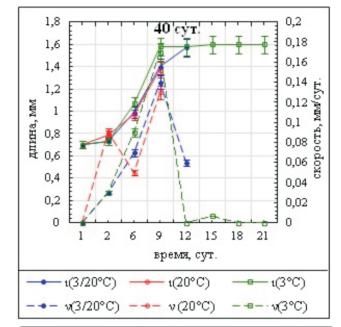
Для понимания изменений, происходящих в семенах во время прорастания, изучение динамики размеров и сухой массы целых семян дает минимум информации. Между тем анализ отдельных элементов семени, прежде всего, зародыша, позволяет обнаружить весьма существенные изменения.

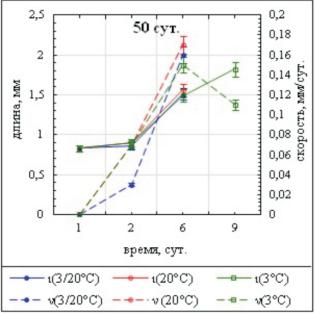
Развитие зародыша в семенах укропа при прорастании идет по-разному в зависимости от возраста семян и режима проращивания (рис. 1).


Зародыш в семенах, возраст, которых насчитывает 30 суток, в начальный период прорастания отличался резким ростом до 0,04 мм/сут. при температуре + 3°C; до 0,08 мм/сут. при темпера-

СЕМЕНОВЕДЕНИЕ

1. Динамика роста зародыша укропа в зависимости от расположения соцветия на материнском растении


Порядок ветвления	Расположение зонтичка в соцветии	Длина зародыша, мм					
		30 сут.	35 сут.	40 сут.	45 сут.	50 сут.	
1 порядок	центр	0,50±0,02	0,62±0,02	0,69±0,03	0,73±0,04	0,77±0,04	
	края	0,44±0,03	0,59±0,02	0,67±0,02	0,75±0,04	0,80±0,01	
2 порядок	центр	0,43±0,02	0,55±0,04	0,69±0,01	0,72±0,02	0,73±0,03	
	края	0,40±0,02	0,52±0,03	0,64±0,03	0,71±0,02	0,75±0,02	


Рис. 1. Рост зародыша в процессе прорастания семян разной степени зрелости и различных температурных режимах проращивания

Доразвитие зародыша в семенах возрастом 40 суток также характеризовалось скачком темпа роста зародыша в начале прорастания на всех изучаемых фонах проращивания. Наивысшая скорость роста зародыша (0,17 мм/сут.) была

2. Влияние температуры на прорастание семян укропа различной степени зрелости

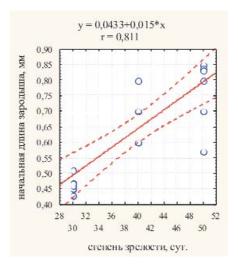
	Характеристика процесса прорастания								
Степень зрелости, сут.	начало прорастания, сут.	полное прорастание, сут.	средняя скорость роста зародыша, мм/сут.	число суток до наступления тах скорости прорастания семян, сут.	Прорастание семян (max), %				
t = 20°C (st)									
30	-	-	0,009±0,0005	-	0				
40	10	19	0,08±0,004	15,6±0,72	63				
50	6	14	0,11±0,004	9,8±0,95	71				
HCP ₀₅	-	-	-	-	1,6				
t = 3°C									
30	-	-	0,002±0,0004	-	0				
40	-	-	0,03±0,005	-	0				
50	11	20	0,11±0,006	16,3±0,32	89				
HCP ₀₅	-	-	-	-	2,1				
t = 3/20°C									
30	16	31	0,06±0,004	24,2±1,54	48				
40	12	27	0,07±0,004	21,4±0,85	68				
50	6	14	0,12±0,007	9,0±0,91	87				
HCP ₀₅	-	-	-	-	2,3				

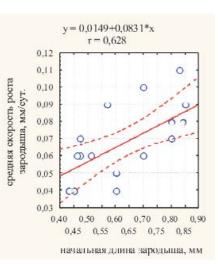
зафиксирована при пониженной температуре проращивания. Однако затем происходило резкое падение скорости, и рост останавливался. При использовании переменной температуры проращивания начальный скачок интенсивности роста был ниже на 0,03 мм/сут. по сравнению с фоном пониженной температуры и составлял 0,14 мм/сут. Впоследствии рост зародыша замедлялся, тем не менее, он оказался

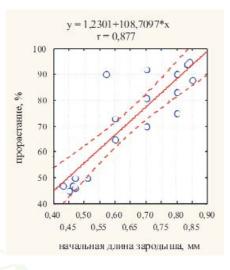
достаточен для начала прорастания семян.

Рост зародыша в 50-суточных семенах происходил аналогичным образом при всех изучаемых температурных режимах проращивания. Уже в первые сутки после постановки на проращивание происходил резкий скачок скорости роста зародыша (до 0,15 – 0,17 мм/сут.), сопровождающийся началом прорастанием семян.

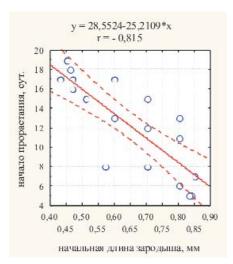
Средняя скорость роста зародыша была наиболее высокой у семян, возраст которых составил 50 суток, при всех режимах проращивания она находилась в пределах 0,11 – 0,12 мм/сут., что на 0,04 – 0,08 и 0,06 – 0,1 мм/ сут. выше 30-ти и 40-суточных семян укропа соответственно (табл. 2).


Изучение динамики прорастания семян разной степени зрелости при исследуемых температурных режимах


СЕМЕНОВЕДЕНИЕ


проращивания имеет свои особенности в зависимости от сочетания изученных факторов. Следует отметить, что у недозрелых семян (возраст 30 суток), прорастание зафиксировано только при использовании режима переменных температур. Период прорастания оказался наиболее растянутым, прорастание семян началось на 16-е и закончилось на 31-е сутки. При этом максимальная скорость прорастания семян наступала через 24,2±1,54 сут., средняя скорость роста зародыша составляла 0,06 мм/сут., а процент проросших семян был на уровне 48 %. При использовании других температур 30суточные семена не прорастали.

С увеличением возраста семян до 40 суток прорастание при 2-х температурных режимах начинался через 10-12 суток, происходил быстрее (средняя скорость роста зародыша составила -0,07-0,08 мм/сут.). При этом число проросших семян увеличивалось до 43-68%. Следует отметить ускорение интенсивности прорастания при постоянной температуре проращивания (+ 20°С), при этом температурном режиме число суток до наступления максимальной скорости прорастания семян составляло 15,6±0,72 сут., что на 5,8 сут. меньше по сравнению с переменными температурами.


50-суточные семена прорастали при всех изученных температурных режимах. Начало прорастания отмечено на 6-11 сутки, а полное – на 14-20 сутки с момента постановки на проращивания. Минимальное число суток до наступления максимальной скорости прорастания семян отмечено при переменной температуре и составляло $9,0\pm0,91$ сут., максимальное при t=+3°C – $16,3\pm0,32$ сут. Доля проросших семян изменялась от 71 до 89%, достигая максимума (89%) при t=+3°C.

Используя регрессионный анализ данных при режиме проращивания с использованием переменных (t = 3/20°C) температур, выявлена зависимость между параметрами, определяющими качество и степенью зрелости семян (рис. 2).

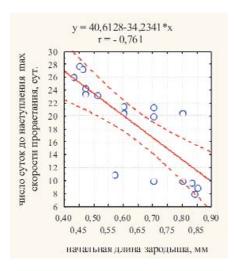
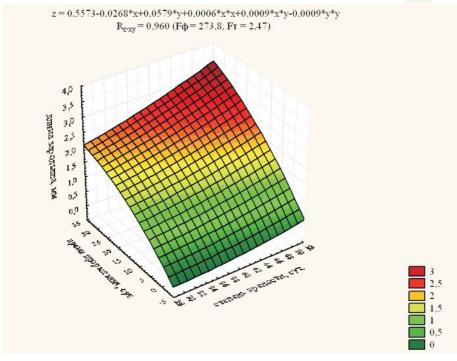



Рис. 2 — Регрессионный анализ параметров, определяющих качество семян укропа (при $t=3/20^{\circ}$ C)

Семена разной степени зрелости отличаются по величине зародыша. Начиная с возраста 30 сут. семена имели начальную длину зародыша – 0,45; 0,70 и 0,80 мм соответственно. Регрессионный анализ этих параметров показывает тесную прямую связь, при этом коэффициент корреляции составляет г

Рис. 3. Зависимость роста зародыша укропа от степени зрелости семян и времени прорастания (при $t=3/20\,^{\circ}$ C)

= 0,811. В связи с этим для прорастания семян разной степени зрелости в одинаковых условиях требуется различное время. Коэффициент корреляции в этом случае показывает тесную обратную связь: r = -0,815.

Начальная длина зародыша влияет и на долю проросших семян. Статистический анализ при этом показывает прямую высокую зависимость (r = 0,877) между этими параметрами.

Высокая зависимость между степенью зрелости и параметрами, которые определяют качество семян укропа, позволяет провести множественный корреляционный анализ и графически представить плоскость регрессии (рис. 3).

При этом коэффициент множественной корреляции составляет $R_{z-xy} = 0.960$ ($F_{\varphi} = 273.8 > F_{\tau} = 19.3$). Это дает возможность, в контролируемых условиях, прогнозировать состояние зародыша на разных этапах прорастания.

Поверхность прямолинейной регрессии z (длина зародыша) на x (степень зрелости семян) и у (время прорастания) в трех мерном пространстве показывает, как изменяется длина зародыша при определенных комбинациях x и y. Отклик поверхности регрессии дает четкое представление об эффекте совместного влияния факторов на результативный признак.



Рис. 3. Зависимость роста зародыша укропа от степени зрелости семян и времени прорастания (при t = 3/20°C)

Заключение

Таким образом, архитектоника семенного растения укропа, степень зрелости семян определяют линейные размеры зародыша, оказывая существенное влияние на явление покоя, скорость доразвития зародыша и основные параметры качества семян, отвечающие за их прорастание.

Литература

- 1. Грушвицкий И. В., Агнаева Е. Я., Кузина Е. Ф. О разнокачественности зрелых семян моркови по величине зародыша // Ботанический журнал, 1963. Т. 48. № 10. С. 1484 1489.
- 2.Грушвицкий И. В. Роль недоразвития зародыша в эволюции цветковых растений // Комаровские чтения, 1961. №14. С. 1 46.
- 3. Доспехов Б.А. Методика полевого опыта / Б.А. Доспехов. М.: Агропромиздат, 1985. 351 с.
- 4. Еременко Л. Л. Морфологические особенности овощных растений в связи с семенной продуктивностью.

- Новосибирск: Наука, 1975. 469 с.
- 5. Кордюм Е. Л. Цитоэмбриология семейства зонтичных.
- Киев: Наукова Думка, 1967. 175 с.
- 6. Леманн Е., Айхеле Ф. Физиология прорастания семян злаков // пер. с нем. В. А. Бриллиант, М. Ф. Лилиенштерн. М.: Сельхозгиз, 1936. 489 с.
- 7.Николаева М.Г. Биология семян/ М.Г. Николаева, И.В. Лянгузова, Л.М. Поздова. СПб: НИИ химии, 1999. 232 с. 8. Stokes P. A physiological study of embryo development in Heracleum sphondylium L. II. Effect of temperature on metabolism // Ann. Bot., 1953. № 17. V. 65. P. 157 173.