УДК 631.524.85: 635.656

ОЦЕНКА СРЕДЫ КАК ФОНА ДЛЯ ОТБОРА ПРИ СЕЛЕКЦИИ ГОРОХА ОВОЩНОГО НА АДАПТИВНОСТЬ

Пивоваров В.Ф. – директор ГНУ ВНИИССОК, академик Россельхозакадемии.

Котляр И.П. – кандидат с.-х. наук, с.н.с. лаборатории селекции и семеноводства овощных бобовых культур

ГНУ Всероссийский НИИ селекции и семеноводства овощных культур Россельхозакадемии, Россия, 143080, Московская область, п. ВНИИССОК, ул. Селекционная, д.14 Тел.: +7(495) 599-24-42

E-mail: vniissok@mail.ru

Оценка адаптивной способности перспективных образцов гороха овощного, проведенная в течение четырех лет испытаний в одном пункте, показала, что среда ВНИИССОК может служить информационным фоном для селекции на адаптивность, так как создаются такие условия отбора, при которых обеспечивается фенотипическая реализация по продуктивности и экологической устойчивости и их сочетание в одном генотипе.

Ключевые слова: горох, адаптивность, среда, отбор, селекция, фон

спользование традиционных методов селекции и семеноводства при создании адаптивных сортов и их размножении неперспективно. Наиболее эффективно работу в этом направлении можно проводить методами экологической селекции. При этом экологический фон играет активную роль при необходимости обеспечить ту или иную степень изменчивости в селекционной популяции. Большое значение имеет фон и при селекции на адаптивность. Рядом исследователей (Кильчевский, 1993; Добруцкая, 1997, 2000; Мусаев, 1998 и др.) достигнуты определенные результаты при выборе фонов для селекции на адаптивность. По мнению

исследователей (Лудилов и др., 1989), наиболее репрезентативные данные о стабильности и адаптивности исходного и селекционного материала, а также кандидатов в сорта могут быть получены при испытании в трех пунктах в течение двух лет. Большое значение при этом имеет размещение испытания в наиболее информативных средах.

Большинство авторов предлагает при селекции на адаптивность создать такие условия отбора, которые обеспечат фенотипическую реализацию генетических систем продуктивности и устойчивости и их сочетание в одном генотипе. Считают, что это возможно при отборе в среднепродук-

1. Сортоиспытание сортов гороха овощного на сортоучастке ВНИИССОК по основным хозяйственно важным признакам, 1993-1996 годы

Признаки	Урожайность т /г а											
	зеленой массы			бобов			зеленого горошка					
Годы Сорта	1993	1994	1995	1996	1993	1994	1995	1996	1993	1994	1995	1996
Ранний грибовский 11 (st)	32,3	30,7	16,8	40,0	10,6	14,8	7,6	18,7	4,36	6,51	2,39	7,04
2КСИ96	34,0	29,8	16,0	39,8	10,2	14,3	6,3	21,2	3,47	6,25	2,51	8,6
3КСИ96	35,4	25,0	19,5	28,2	13,2	13,5	9,3	15,7	4,56	5,47	3,84	6,51
Виола (st)	29,9	40,2	24,2	29,8	11,5	19,8	13,9	15,5	5,02	9,26	6,62	7,04
9КСИ96	52,2	46,8	20,1	39,4	11,9	24,6	11,4	18,8	4,93	13,98	5,16	5,28
17КСИ96	35,9	30,3	15,1	40,7	11,8	14,3	9,8	17,9	4,60	6,42	4,68	7,05
20КСИ96	38,7	41,2	21,2	35,6	19,5	24,1	10,7	14,8	8,50	10,0	4,40	7,05
HCP ₀₅	6,76	7,3	2,98	4,85	2,94	4,5	2,33	2,13	1,47	3,52	1,37	0,91

тивных или в нескольких пунктах с различными параметрами среды (Кильчевский, Хотылева, 1997).

Ведется работа и по обоснованию выбора зон адаптивного семеноводства. Однако по семеноводству в этом плане информации явно недостаточно. Немногочисленные попытки экологического обоснования зон семено-

Исследования во ВНИИССОК дали возможность продвинуться в этом направлении. Было определено, что наиболее благоприятные условия для сохранения биотипов в сортах в процессе семеноводства могут быть выявлены при комплексной оценке среды по методу А.В. Кильчевского и Л.В. Хотылевой (1985). Оптимальными при

ствующих выделению форм, сочетающих продуктивность и экологическую устойчивость при экологическом изучении сортов гороха овощного, определяющих возможность размещения семеноводческих посевов.

Исследования проводили в 1993-1996 годах на константных сортообразцах конкурсного сортоиспытания

2. Параметры среды как фона для отбора гороха овощного по признаку «урожайность зеленого горошка»

Среда (ВНИИССОК), годы	Среднее значение (X), т/га	D(I)k	S(I)ek	Фон Т(J) lk	
1993	5,06	-1,06	31,57	0,86	
1994	8,27	2,15	36,63	0,75	
1995	4,23	-1,90	35,22	0,71	
1996	6,94	0,81	14,10	0,03	

водства овощных культур, как правило, ограничивались оценкой продуктивности семенных растений в зоне предполагаемого семеноводства, проверкой посевных качеств репродуцированных семян и определением влияния условий выращивания семян на сортовые качества семенного потомства.

этом являются высокопродуктивные среды со стабилизирующим фоном (Кравчук, Пивоваров, 1989; Решетников, 2006).

Цель наших исследований заключалась в сравнительной оценке природных условий ряда лет в одном географическом пункте как фонов, способгороха овощного лаборатории селекции и семеноводства бобовых культур ВНИИССОК. Объектами исследования были пять сортообразцов и два районированных сорта. Экологическими фонами служили разные годы испытания при оптимальном сроке посева.

3. Параметры среды как фона для отбора по признаку «урожайность бобов» гороха овощного

Среда (ВНИИССОК), годы	Среднее значение (X), т/га	D(I)k	S(I)ek	Фон Т(Ј) Ік	
1993	12,68	-1,84	24,85	0,39	
1994	17,92	3,43	27,09	0,86	
1995	9,85	-4,64	25,39	0,71	
1996	17,51	3,02	13,03	-0,32	

В целом, погодные условия в период проведения опытов значительно варьировали как по годам, так и по месяцам и декадам в пределах года. Это способствовало тому, что растения, посеянные в оптимальные сроки, попадали под влияние различных температурных и влажностных режимов в различные периоды вегетации, в том числе и критические по отношению к данным факторам (недостаток влаги и

вали по методике А.В. Кильчевского и Л.В. Хотылевой (1985).

Показатели урожайности семи сортообразцов гороха овощного в период технической спелости по зеленому горошку и побочной продукции (бобов и урожайность зеленой массы) приведены в таблице 1.

Худшие условия сложились в 1995 году. Данные таблицы показывают, что условия различных лет

ры сред по каждому показателю.

Комплексная оценка среды (таблицы 2,3,4,5) показала, что наиболее изменчив по годам параметр dk – продуктивность среды. Два года испытания характеризовались низким (Н) уровнем этого параметра (50%), по одному году – высоким (В) (25%) и средним (С). Таким образом, только 25% лет испытания в условиях ВНИИССОК позволяют

4. Параметры среды как фона для отбора по признаку «урожайность зеленой массы» гороха овощного

	Среда (ВНИИССОК), годы	Среднее значение (X), т/га	D(I)k	S(I)ek	Фон T(J) lk
1	1993	37,00	5,23	20,27	0,50
1	1994	34,85	3,09	22,62	0,96
1	1995	18,99	-12,78	16,98	0,54
1	1996	36,23	4,46	14,38	0,04

Примечание:

dk – продуктивность среды, отклонение от среднего значения признака всех образцов в конкретной среде от среднего опыта; Sek – относительная дифференцирующая способность среды, характеризует способность конкретной среды выявлять изменчивость среди генотипов, показывает эффекты взаимодействия ге-

нотипа и среды (компенсирующая и дестабилизирующая); tk – типичность среды, то есть способность сохранять ранги генотипов по изучаемому признаку, полученные при их усредненной оценке по всей совокупности сред.

высокие температуры). Это, в свою очередь, позволило объективно изучить реакцию гороха овощного на сезонную флуктуацию факторов внешней среды.

Параметры сред как фона для отбора и размножения рассчиты-

оказали значительное влияние на уровень продуктивности по всем трем показателям, что подтверждается дисперсионным анализом, проведенным по каждому году исследований. Согласно полученным данным, были рассчитаны парамет-

дать оценку стабильности потенциальной продуктивности (табл.5).

Наиболее благоприятным фоном для ведения селекции является анализирующий фон, так как на нем в полной мере проявляется разнообразие генотипов. Анализирующий

5. Изменчивость по годам среды ВНИИССОК (Московская область) как фона для отбора по основным признакам «урожайность зеленого горошка и бобов» гороха овощного

_	Уровень параметров фона					
Параметры среды	1993	1994	1995	1996		
Продуктивность, dk	Н	В	Н	С		
Относительная дифференцирующая способность, Sek	А	А	А	СТ		
Типичность, tk	В	В	В	Н		

Примечание:

Н - низкий, С - средний, В - высокий, СТ - стабилизирующий, А - анализирующий.

фон сформировался с 1993 по 1995 годы, и только в 1996 году уровень изменчивости (Sgi) соответствовал стабилизирующему фону, на котором проявилась потенциальная продуктивность генотипов.

Типичность среды незначительно менялась по годам (1993-1995 годах) и находилась на высоком уровне (75%), а в 1996 году – имела низкий показатель (25%). Сочетание высокой типичности и продуктивности среды на анализирующем фоне сформировалось в 1994 году.

Стабилизирующий фон проявился из четырех лет лишь в 1996 году при низкой типичности среды и средней продуктивности.

Анализирующий фон формировался три года из четырех, что достаточно для выявления полиморфизма набора образцов. Сравнительно редко формируется высокопродуктивная среда.

В целом можно заключить, что среда ВНИИССОК более благоприятна для селекции гороха овощного, чем для размножения образцов и семеноводства.

Среда ВНИИССОК может служить информационным фоном при селекции на адаптивность, так как создаются такие условия отбора, при которых обеспечивается фенотипическая реализация по продуктивности и экологической устойчивости и их сочетание в одном генотипе.

При оценке среды наиболее информативен признак «урожайность зеленого горошка»,а менее других «урожайность зеленой массы».

Литература

- 1. Добруцкая Е.Г. Экологические основы селекции и адаптивного семеноводства овощных культур. Автореф. дис...доктора с.-х. наук.-М.,1997. -48с.-(ВНИИССОК).
- 2. Добруцкая Е.Г., Мусаев Ф.Б., Наджиев Д.Н. Информативность среды как селекционного фона при оценке томата на адаптивность. // Селекция овощных культур. Вып. 35.-М., 1998.- С.41-59.
- 3. Добруцкая Е.Г., Еремичев Р.В., Пронина Е.П. Возможность оценки адаптивности и стабильности овощного гороха при кратковременном испытании в одном пункте.//Селекция и семеноводства овощных и бахчевых культур: научные труды./РАСХН, ВНИИССОК.-М., 2000.-С. 48-52.
- 4. Добруцкая Е.Г., Мусаев Ф.Б., Решетников Е.Е. Роль условий среды в семеноводстве фасоли. Сб.н.т. по

овощеводству и бахчеводству. т.1./ВНИИО. -М.,2006. -C.141-145.

- 5. Кильчевский А.В., Хотылёва Л.В. Метод оценки адаптивной способности и стабильности генотипов, диффиренцирующей способности среды.//Генетика, 1985, т.XXI.-№9.-С.1484-1491.
- 6. Кильчевский А.В., Коготько Л.Г. проблемы экология в сельском хозяйстве.//Тез.докл.науч.конф.- Пенза, 1993. С.37.
- 7. Кильчевский А.В., Хотылёва Л.В. Экологическая селекция растения.- Минск, 1997.
- 8. Лудилов В.А. и др. Селекция овощных культур.// Сб. науч. тр. ВНИИССОК.- 1989.- Вып. 28. С.10-27.
- 9. Методические указания по использованию влажных субтропиков Ленкоранской зона Азербайджанской ССР для повышения эффективности селекции овощных культур.- М., 1989.-32с.