ПРОБЛЕМЫ ХРАНЕНИЯ И ПЕРЕРАБОТКИ ОВОЩНОЙ ПРОДУКЦИИ

УДК 664.8:635.342

ОЦЕНКА СОРТОВ И ГЕТЕРОЗИСНЫХ ГИБРИДОВ КАПУСТЫ БЕЛОКОЧАННОЙ НА ПРИГОДНОСТЬ К ПЕРЕРАБОТКЕ

Примак А.П.¹ – доктор биол. наук, зав. лаб. оценки качества новых сортов и гибридов овощных культур при хранении и переработке **Старцев В.И.**¹ – доктор с.-х. наук, зав. лаб. селекции и семеноводства капустных культур **Зимина Н.К.**¹ – кандидат биологических наук, старший научный сотрудник

Тамкович С.К.² – кандидат технических наук, зав.лабораторией №1 отдела технологии консервирования и продуктов детского питания **Степанищева Н.М.**² – кандидат технических наук, ведущий научный сотрудник

Посокина Н.Е. ² – кандидат технических наук, ведущий научный сотрудник

Лялина О.Ю. ² – старший научный сотрудник

¹ГНУ Всероссийский НИИ селекции и семеноводства овощных культур Россельхозакадемии Россия, 143080, Московская область, п. ВНИИССОК Тел.+7(495)599-24-42 E-mail: vniissok@mail.ru

²ГНУ Всероссийский НИИ консервной и овощесушильной промышленности Россельхозакадемии Россия, 142703, Московская область, г.Видное, ул.Школьная, 78 E-mail: vnikopltok@yandex.ru

Проведена оценка различных сортообразцов капусты на их пригодность для переработки и выявлены лучшие сорта и гетерозисные гибриды капусты белокочанной для этой цели. Проведена дегустационная оценка консервированных продуктов.

Ключевые слова: капуста белокочанная, консервирование, биохимический состав.

апуста белокочанная занимает особое место среди овощных культур. Она используется в свежем виде, а также для квашения, маринования, приготовления салатов, первых и вторых блюд. Это существенный источник пополнения организма углеводами, белками, минеральными веществами и витаминами.

В нашей стране налажен конвейер поступления свежей капусты белокочанной для потребителей за счет научно обоснованного сочетания различных по группам спелости сортов и гетерозисных гибридов и их способности к продолжительному хранению.

Вместе с тем капуста представляет незаменимое сырье для переработки. Для производства консервов используют очищенную капусту с плотными кочанами и белыми листьями. Кочаны должны быть однородные по форме и размеру, плоскоокруглые или округ-

ПРОБЛЕМЫ ХРАНЕНИЯ И ПЕРЕРАБОТКИ ОВОЩНОЙ ПРОДУКЦИИ

1. Содержание биохимических веществ в сырье и консервах различных сортов и гетерозисных гибридов капусты белокочанной (2008 год)

Сорт, гибрид	Сухое вещество, %		Витамин С, мг %		Сахара, %	
	сырье	консервы	сырье	консервы	сырье	консервы
Снежинка F ₁	8,60	8,98	47,88	5,28	6,68	2,59
Парус	8,20	9,21	44,70	5,01	6,24	4,11
Зимовка 1474	7,67	8,94	43,76	5,46	5,67	3,08
Подарок 2500	7,95	8,98	42,88	5,28	5,81	3,08
Зарубежный образец	8,05	9,46	42,88	5,28	5,48	3,04

Примечание: Биохимический анализ консервов проводился в марте 2009 года

лые, массой до 4 кг, с 4-6 кроющими листьями, неглубоким залеганием кочерыги, плотной консистенции, без грубого жилкования листьев; внутренние листья – белого цвета, без фиолетовой пигментации и точечного некроза, без горечи и острого привкуса. Не допускаются в производство зелёные, пожелтевшие, вялые, раздавленные и загрязненные гусеницами и их отложениями кочаны.

В 2008 году во ВНИИССОК совместно с ВНИИКОП были начаты работы по изучению пригодности различных сортов капусты белокочанной для переработки. Работу проводили в соответствии с методическим руководством по химико-технологическому сортоиспытанию овощных, плодовых и ягодных культур для консервной промышленности (Ломачинский В.А. и др., 2008).

Для оценки технологических качеств продукции в 2008 году были взяты следующие сорта и F_1 гибриды капусты белокочанной: Снежинка F_1 , Парус, Зимовка 1474, Подарок 2500 и зарубежный образец. Исходный материал соответствовал требованиям, предъявляемым к сырью для переработки. Данные биохимического анализа исходного сырья и консервов изучаемых сортов и F_1 гибри-

2. Дегустационная оценка качества консервов, выработанных из различных сортов и гетерозисных гибридов капусты белокочанной (март, 2009 год)

Сорт, F₁ гибрид	Характеристика продукта	Общая оценка, балл
Снежинка F ₁	Хороший цвет, хрустящая консистенция, характерный "капустный" запах, приятный вкус	4,9
Парус	Имеет сероватый оттенок, хрустящая консистенция	4,4
Зимовка 1474	Размягченная консистенция, цвет характерный для маринованной капусты, без серых оттенков	4,4
Подарок 2500	Цвет без серых оттенков, приятный кисло-сладкий вкус, хрустящая консистенция	4,7
Рыночный вариант	Волокнистая, жесткая, неприятного вкуса, с ярко выраженным темным оттенком, который усиливается после хранения	3,9

ПРОБЛЕМЫ ХРАНЕНИЯ И ПЕРЕРАБОТКИ ОВОЩНОЙ ПРОДУКЦИИ

3. Содержание биохимических веществ в сырье и консервах различных сортов и F_1 гибридов капусты белокочанной (2010 год)

Сорт, F₁ гибрид	Сухое вещество, %		Витамин С, мг %		Caxapa, %	
	сырье	консервы	сырье	консервы	сырье	консервы
Метелица F₁	8,33	10,79	27,28	3,52	4,7	2,59
Парус	8,36	8,94	28,16	3,52	7,68	4,8
Зимовка 1474	8,34	10,49	29,92	3,52	8,00	4,9
Подарок 2500	8,97	9,56	29,90	3,52	5,28	4,6

дов капусты белокочанной представлены в таблице 1.

Содержание сухого вещества в сырье было наивысшем у гибридов Снежинка F_1 и сорта Парус. При этом основной его частью были сахара, в то время как импортный образец (вариант с рынка), хотя и имел относительно высокое содержание сухого вещества, но по содержанию сахаров он находился на последнем месте среди изучаемых сортов и гетерозисных гибридов.

Биохимический анализ консервов, полученных из исследуемых сортов и гибридов, показал (табл.1), что если при консервировании капусты белокочанной по сортам потери сахаров составляют 9-40%, то по аскорбиновой кислоте эти потери еще более значительны. В консервах её содержание составляет 11-13% от общего количества находящейся в свежей ка-

пусте. Это позволяет нам говорить о необходимости вести селекцию на повышенное содержание устойчивой при переработке формы витамина C – аскорбигена.

После полугодового хранения выработанных консервов проводили их дегустацию. Результаты этих исследований представлены в табл.2.

В 2010 году в исследования были включены следующие сорта и гетерозисный гибрид: Зимовка 1474, Подарок 2500, Парус и Метелица F₁.

Результаты изучения исходного сырья капусты белокочанной и продуктов его переработки представлены в таблице 3.

В 2010 году в исходном сырье капусты белокочанной, ввиду засушливого года, было более высокое содержание сухого вещества и сахаров по сравнению с образцами, выращенными в 2008 году, что также сказалось и

на их повышенном содержании в консервах. Содержание аскорбиновой кислоты во всех образцах было значительно ниже по сравнению с 2008 годом и при проведении консервирования также резко уменьшалось.

Результаты проведенной дегустационной оценки различных сортов и F_1 гибридов в 2010 году показали, что лучшими по вкусовым качествам были гибрид F_1 Метелица – 4,9 балла, сорт Парус – 4,7 балла и как худший по вкусовым качествам отмечен сорт Зимовка 1474 – 4,2 балла.

Таким образом, можно сделать вывод, что сорта и гетерозисные гибриды капусты белокочанной селекции ВНИИССОК пригодны к консервированию, а новые гетерозисные гибриды F_1 Снежинка, Метелица и сорт Парус в наибольшей степени отвечают требованиям, предъявляемым к сортам при производстве консервов.

Литература

- 1. Ломачинский В.А., Мегердичев Е.Я., Клюева О.А., Коровкина Н.В., Тамкович С.К., Посокина Н.Е., Цимбалаев С.Р. Методическое руководство по химико-технологическому сортоиспытанию овощных, плодовых и ягодных культур для консервной промышленности./ М., 2008. С.1-156.
- 2. Борисов В.А., Литвинов С.С., Романова А.В. Качество и лежкость овощей./М.,2003.- С. 1-625.
- 3. Сокол П.Ф., Примак А.П., Шманаева Т.Н. Химический состав овощных и бахчевых культур в зависимости от условий произрастания. /Труды ВНИИССОК.- Т.4. М., 1976. С.56-70.
- 4. Химический состав пищевых продуктов (под редакцией А.А. Покровского)./ М.1976. С. 1-227.