СЕЛЕКЦИЯ И СЕМЕНОВОДСТВО СЕЛЬСКОХОЗЯЙСТВЕННЫХ РАСТЕНИЙ

Оригинальные статьи / Original articles

https://doi.org/10.18619/2072-9146-2020-2-32-37 УДК 635.9:582.573.16:631.531.011

Мусаев Ф.Б.¹, Прияткин Н.С.², Бухаров А.Ф.³, Иванова М.И.³, Кашлева А.И.³, Щукина П.А.², Белецкий С.Л.⁴, Ушакова О.В.¹

'Федеральное государственное бюджетное научное учреждение "Федеральный научный центр овощеводства" (ФГБНУ ФНЦО) 143072, Россия, Московская область, Одинцовский район, п. ВНИИССОК, ул. Селекционная, д.14 E-mail: musayev@bk.ru

² ФГБНУ «Агрофизический научноисследовательский институт» (ФГБНУ АФНИИ), 195220, Санкт-Петербург, Гражданский просп., д. 14 E-mail: prini@mail.ru, art122@bk.ru

³Всероссийский научно-исследовательский институт овощеводства — филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр овощеводства» (ВНИИО — филиал ФГБНУ ФНЦО) 140153, Московская область, Раменский район, д. Верея, стр. 500 E-mail: vniioh@yandex.ru, afb56@mail.ru, ivanova_170@mail.ru

⁴ФГБУ Научно-исследовательский институт проблем хранения Росрезерва 111033, Россия, г. Москва, Волочаевская ул., д. 40, корп. 1 E-mail: info@niipkh.rosreserv.ru

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Для цитирования: Мусаев Ф.Б., Прияткин Н.С., Бухаров А.Ф., Иванова М.И., Кашлева А.И., Щукина П.А., Белецкий С.Л., Ушакова О.В. Анализ разнокачественности семян лука Кристофа (Allium cristophii Trautv.) с помощью цифровой морфометрии. Овощи России. 2020;(2):32-37. https://doi.org/10.18619/2072-9146-2020-2-32-37

Поступила в редакцию: 14.03.2020 Принята к печати: 14.04.2020 Опубликована: 25.04.2020

Farhad B. Musaev¹, Nikolay S. Priyatkin², Alexander F. Bukharov³, Maria I. Ivanova³, Anna I. Kashleva³, Polina A. Schukina², Sergey L. Beletsky⁴, Olga V. Ushakova¹

¹ Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC) 14, Selectsionnaya str., VNIISSOK, Odintsovo district, Moscow region, Russia, 143072 E-mail: musayev@bk.ru

² Federal State Budgetary Scientific Institution "Agrophysical Research Institute" 14, Grazhdansky Avenue, St. Petersburg, Russia, 195220 E-mail: prini@mail.ru

³ All-Russian Scientific Research Institute of Vegetable Growing – Branch of the FSBSI Federal Scientific Vegetable Center 500, Vereya, Ramensky district, Moscow region, Russia E-mail: vniioh@yandex.ru

⁴ FSBI Research Institute for Storage Problems of the Federal Reserve 40, bldg. 1, Volochaevskaya St., Moscow, Russia, 111033 E-mail: info@niipkh.rosreserv.ru

Conflict of interest: The authors declare no conflict of interest.

For citation: Musaev F.B., Priyatkin N.S., Bukharov A.F., Ivanova M.I., Kashleva A.I., Schukina P.A., Beletsky S.L., Ushakova O.V. Analysis of the variety of seeds quality Allium cristophii Trautv. with using digital morphometry. Vegetable crops of Russia. 2020;(2):32-37. (In Russ.) https://doi.org/10.18619/2072-9146-2020-2-32-37

Received: 14.03.2020 **Accepted for publication:** 14.04.2020 **Accepted:** 25.04.2020

Анализ разнокачественности семян лука Кристофа (Allium cristophii Trautv.) с помощью цифровой морфометрии

РЕЗЮМЕ

Актуальность: Анализ изображений является доступным методом, который может преобразовать качественные переменные в количественные. Компьютерную визуализацию использовали в биологии семян различными способами, включая тестирование энергии семян и их идентификацию. В статье рассматривается разработка в области компьютерного анализа изображений, которые способствуют улучшению понимания морфологии семян с точки зрения их параметров радиальной разнокачественности: размера, формы и цветовой гаммы. Размер и форма семянок зависит от расположения их в соцветии. Цель работы состояла в измерении геометрических показателей и анализе цветовых признаков семянок А. cristophii в системе RGB, обусловленных разноярусным расположением в соцветии.

Методика. Проанализированы разнокачественные семена Allium cristophii Trautv. из биоколлекции ВНИИО — филиала ФГБНУ ФНЦО. Измерение морфометрических и оптических параметров семян осуществляли путем анализа их изображений с помощью программного обеспечения «ВидеоТест-Морфология».

Результаты. Анализ разнокачественности семянок лука Кристофа показал, что длина и ширина семянок с нижнего яруса составили 3,301 и 2,681 мм, со среднего — 3,295 и 2,605 мм и с верхнего яруса — 3,265 и 2,58 мм, соответственно. Средний размер семянок с нижнего яруса был на уровне 2,99 мм, среднего — 2,95 мм и нижнего яруса — 2,92 мм. Выявлено статистически значимое снижение показателей по всем цветовым каналам (по цветовой модели RGB) от нижнего яруса — к верхнему. Ярусное расположение цветков на соцветии является причиной неодновременного созревания семянок Allium. Оперативная легкость, низкая стоимость коммерческих компьютерных технологий и неразрушающий анализ семян и сортировка подчеркивают потенциал этого метода для применения в семенной лаборатории.

<u>Ключевые слова:</u> разнокачественность семян, цифровой анализ изображений, морфометрические параметры семян, цветовые признаки семян

Analysis of the variety of seeds quality Allium cristophii Trautv. with using digital morphometry

ABSTRACT

Relevance. Image analysis is an accessible method that can convert qualitative variables to quantitative variables. Computer imaging has been used in seed biology in a variety of ways, including testing emergence rate and identifying them. The paper examines the development in the field of computer image analysis that contribute to a better understanding of seed morphology in terms of their radial heterogeneity parameters: size, shape and color range. The size and shape of the seeds depends on the location of them in the inflorescence. The aim of the work was measuring geometric indicators and analyzing the color characteristics of *Allium cristophii* seeds in the RGB system, due to the multi-tiered arrangement in the inflorescence.

Methods. TThe heterogeneous seeds *A. cristophii* Trautv were analyzed. From All-Russian Scientific Research Institute of Vegetable Growing biocollection – branch of Federal Scientific Vegetable Center. The morphometric and optical parameters of the seeds were measured by analyzing their images using the VideoTesT-Morphology software.

Results. Analysis of Christoph onion seeds heterogeneity showed that the length and width of the seeds from the lower tier were 3.301 and 2.681 mm, from the average – 3.295 and 2.605 mm and from the upper tier – 3.265 and 2.58 mm respectively. The average seed size from the lower tier was 2.99 mm, the average size was 2.95 mm and the lower tier was 2.92 mm. Statistically significant decrease of indicators over all color channels (according to RGB color model) from the lower tier - to the upper tier was revealed. The tiered arrangement of flowers on the inflorescence is the cause of non-time maturation of *Allium* seeds. Operational ease, low cost commercial computer technology, and non-destructive seed analysis and sorting highlight the potential of this method for application in a seed laboratory.

Keywords: heterogeneity of seeds, digital image analysis, morphometric parameters of seeds, color characteristics of seeds.

Введение

овременный уровень научных знаний в семеноведении сельскохозяйственных культур требует применения инновационных инструментальных методов, отличающихся высокой информативностью. Успешно применяются интроскопические методы оценки качества семенного материала, связанные с особенностями внутренней структуры семян [1,2,3]. Активно используют технологии компьютерного анализа изображений семян [4,5].

Морфометрические параметры семян характеризуют продуктивность и качество урожая сельскохозяйственных культур. Подсчет семян и визуальная морфометрия трудоемки в исполнении. Поэтому были предложены различные подходы для эффективной морфометрии семени с использованием методов обработки изображений [6,7,8]. Большинство из этих подходов были реализованы с использованием программного обеспечения для ПК с целью анализа изображений семян на светлом фоне, полученных с помощью цифровой камеры или сканера [9,10]. Эти подходы позволяют пользователям оценивать большое количество морфометрических параметров семени, описывающих форму и цвет [11]. Они также облегчают методы идентификации сорта с использованием изображений семян [12,13,14], определения содержания влаги в семенах и прогнозирования урожайности [15,16].

Методы обработки изображений для морфометрии и классификации семян применяют с 1980-х годов [17]. Обновления этих методов появляются постоянно, в том числе в последние годы. Используют различные методы оптического зондирования для оценки качества и безопас-

ности семян [20], описывают сложные формы семян с использованием 2D-изображений [21,22]. Революционная технология 3D-визуализации и робототехника [23,24] или рентгеновская компьютерная томография [25], могут быть реализованы для точной оценки формы семян. Однако все еще существует необходимость в фенотипировании семян с использованием простых и доступных инструментов [10]. Они могут быть эффективно реализованы с высокой пропускной способностью.

Сотрудниками Агрофизического института и ФНЦО разработана методика [27] морфометрического анализа цифровых сканированных изображений семян на основе использования серийного программного обеспечения «ВидеоТесТ-Морфология» ("Аргус-ВІО"), производства ООО «АргусСофт», г. Санкт-Петербург. Новая методика полностью лишена субъективизма, исключает ошибки оператора, существенно ускоряет время анализа и прибавляет новые параметры оценки исследуемого материала. Ранее нами были проанализированы линейные параметры экологически разнокачественных семян фасоли и матрикально разнокачественных семян моркови и пастернака [26,27].

Цель исследования – изучить морфометрические параметры семян лука Кристофа (*Allium cristophii* Trautv.) из биоколлекции ВНИИО – филиала ФГБНУ **ФНЦО** в условиях Московской области путем цифрового сканирования.

Материал и методы

Материалом для исследований явились разнокачественные семена *Allium cristophii* Trautv. из биоколлекции ВНИИО – филиала ФГБНУ ФНЦО (Московская область).

Рис. 1. Растение A. cristophii Fig. 1. Plant A. cristophii

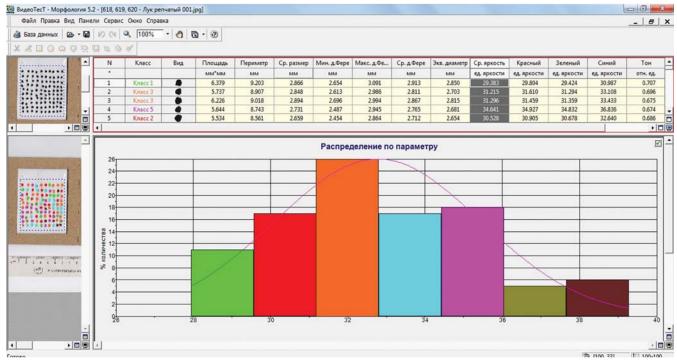


Рис. 2. Интерфейс программы «ВидеоТест-Морфология» Fig. 2. The interface of the program "VideoTest-Morphology"

Семена были собраны из разных ярусов соцветий: нижнего, среднего и верхнего (рис. 1).

Программное обеспечение анализа изображений позволяет проводить автоматические и ручные измерения на изображениях. Программа способна выделять объекты интереса (семена) по цвету или порогу яркости.

Рассчитываются следующие морфометрические параметры семени:

- а) Размерные: площадь проекции (мм²) и периметр (мм); длина (мм), ширина (мм), средний размер (мм), диаметры Фере (мм) и др.
- б) Индексы формы: округлость (отн. ед.), удлиненность (отн. ед.), фактор эллипса (отн. ед.), изрезанность (отн. ед.);
- в) Яркостные: средняя яркость (единицы яркости),
- г) Цветовые: цветовые составляющие по модели RGB (единицы яркости) тон (отн. ед.), насыщенность (отн. ед.).

Измерение морфометрических и оптических параметров семян осуществляли путем анализа изображений с помощью программного обеспечения «ВидеоТест-Морфология». Цифровые изображения семян получены с использованием цифрового планшетного сканера HP Scanjet 200, разрешение 600 dpi, формат файлов TIFF. Интерфейс программы с проанализированным цифровым изображением семян лука Allium cristophii представлен на рисунке 2.

Проводили статистическую обработку значений признаков семян: вычисление для каждого признака минимального и максимального значений, среднего (математическое ожидание), среднеквадратичного отклонения, коэффициента осцилляции, доверительного интервала и коэффициента вариации.

Распределение семян по размерам: длина проекции изображения семени, не имеющего форму круга, на прямую в заданном направлении, измеряемая как расстояние между касательными к контуру изображения, проведенными параллельно выбранному направлению (средний диаметр Фере) δF .

Коэффициент осцилляции (размах вариации) (V_R) отражает относительную изменчивость крайних значений признака по отношению к средней, вычисляют по формуле:

$$VR = \frac{Xmax - Xmin}{Xcn} \quad 100\%$$

Коэффициент вариации (V) рассчитывали по формуле:

$$V = \frac{S}{Xcp} 100\%$$

Результаты и обсуждение

Интерес для морфометрического анализа составляют семена представителей рода Allium L. Лук Кристофа (A. cristophii Trautv.) – среднеазиатский редкий вид, произрастающий в нижнем поясе гор Туркмении и северного Ирана, многолетник. Семянки размером (2,7-3,0)х(2,2-2,5) мм. Масса 1000 семянок равна 3,1-6,0 г. В 1 г навески содержится 166-323 шт. семянок. Семена обладают длительным периодом покоя, что доставляет сложности при их проращивании [28]. В условиях интродукции в Московской области цветонос высотой 15-17 см. Зацветает в июне, семена созревают 20-25 июля. Соцветие – шаровидный рыхлый зонтик диаметром 12-13 см. Продолжительность цветения 28-30 дней. Число цветков в соцветии до 70 шт. Цветки звездчатые, пурпурно-фиолетовые. Ландшафтные дизайнеры активно используют этот вид в озеленении.

Морфометрический анализ показал, что в среднем ярусе соцветия средняя длина семянки составила $3,295\pm0,047$ мм, ширина $-2,605\pm0,045$, площадь $-6,420\pm0,161$ мм², периметр $-9,256\pm0,111$ мм, средний диаметр Фере $-2,93\pm0,04$ мм, фактор круга $-0,94\pm0,01$ отн. ед., фактор эллипса $-1,00\pm0,00$ отн. ед., фактор удлиненности $-1,27\pm0,02$ отн. ед., фактор изрезанности $-0,008\pm0,001$ отн. ед. (табл. 1).

Размах вариации морфологических параметров семянок варьировал от 1,0% (фактор эллипса) до 212,5% (фактор изрезанности).

Площадь семянки имел средний коэффициент вариации (V) – 12,1%, фактор изрезанности – высокий (50 %). Остальные морфологические параметры имели коэффициент вариации ниже 10%.

Максимальный диаметр Фере в среднем составил 3,25 мм, средний диаметр Фере – 2,93 мм.

Цветение растений у всех видов Allium L., образующих полноценные цветки, начинается с вершины соцветия, постепенно перемещаясь к экваториальной части; вторая половина соцветия распускается позже, и самыми последними открываются цветки в нижней его части, в зоне прикрепления к цветоносному стеблю – стрелке. Ярусное расположение цветков на соцветии является причиной неодновременного созревания семянок Allium.

лах цифрового изображения. Выбор основных цветов обусловлен особенностями физиологии восприятия цвета сетчаткой человеческого глаза. С её применением также можно определить цвета и оттенки поверхности семян. Окраска поверхности семян является ярким показателем их качества и позволяет судить о степени их вызреваемости. Это особенно важно для большинства регионов нашей страны с лимитированной свето- и теплообеспеченностью.

Анализ цветовых характеристик радиально разнокачественных семян *A. cristophii* (величины цветовых составляющих по модели RGB) выявил статистически значимое снижение показателей по всем цветовым каналам в ряду от нижнего яруса – к верхнему. Коэффициент вариации показателей яркости трех цветов незначительный – на уровне 10 % или ниже. Синий цвет объекта преобладает над красным и зеленым во всех ярусах соцветия (табл. 2).

Таблица 1. Статистический анализ морфометрических параметров семянок A. cristophii Trautv. из среднего яруса Table 1. Statistical analysis of the morphometric parameters of the seeds of A. cristophii Trautv. from the middle tier

Морфологические параметры семянок	Xmin	Xmax	XCP	SXcp	S	VR, %	V, %
Длина, мм	2,730	3,879	3,295	0,047	0,227	34,9	6,9
Ширина, мм	1,731	3,078	2,605	0,045	0,217	51,7	8,3
Средний размер, мм	2,23	3,36	2,95	0,04	0,18	38,3	6,1
Периметр, мм	7,052	10,345	9,256	0,111	0,538	35,6	5,8
Площадь проекции, мм²	3,483	8,159	6,420	0,161	0,778	72,8	12,1
Максимальный диаметр Фере, мм	2,66	3,84	3,25	0,04	0,22	36,3	6,8
Средний диаметр Фере, мм	2,23	3,27	2,93	0,04	0,17	35,5	5,8
Фактор круга, отн. ед.	0,85	0,99	0,94	0,01	0,03	14,9	3,2
Фактор эллипса, отн. ед.	0,99	1,00	1,00	0,00	0,00	1,0	0
Округлость, отн. ед.	0,58	0,92	0,77	0,01	0,07	37,6	9,1
Удлиненность, отн. ед.	1,05	1,61	1,27	0,02	0,12	44,1	9,4
Изрезанность, отн. ед.	0,001	0,018	0,008	0,001	0,004	212,5	50,0

Анализ разнокачественности семянок, обусловленная радиальным или разноярусным расположением в соцветии, показал, что длина и ширина семянок с нижнего яруса составили 3,301 и 2,681 мм, со среднего – 3,295 и 2,605 мм и с верхнего яруса – 3,265 и 2,58 мм, соответственно. Средний размер семянок с нижнего яруса был на уровне 2,99 мм, среднего – 2,95 мм и нижнего яруса – 2,92 мм (рис. 3). Таким образом, наиболее крупные семянки сформировались в нижнем ярусе соцветия, размер семянок уменьшается в верхнем ярусе. Такое различие в показателях связано с неравномерными условиями питания семянок в пределах соцветия.

Возможности программы «ВидеоТесТ-Морфология» не ограничиваются измерением и подсчетом линейных параметров семян. RGB – цветовая модель, в которой цвет описывается как смешение трех базовых компонентов, красного, зеленого и синего; R, G, B – численное значение яркости соответственно в красном, зеленом и синем кана-

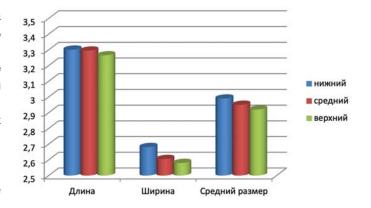


Рис. 3. Размерные характеристики радиально разнокачественных семянок Allium cristophii
Fig. 3. Dimensional characteristics of radially heterogeneous seeds of Allium cristophii

СЕЛЕКЦИЯ И СЕМЕНОВОДСТВО СЕЛЬСКОХОЗЯЙСТВЕННЫХ РАСТЕНИЙ

Таблица 2. Статистический анализ цветовых параметров разнокачественных семянок A cristophii Trautv. Table 2. Statistical analysis of the color parameters of different-quality achenes A. cristophii Trautv.

Показатель	Ярусы соцветия	Xmin	Xmax	XCP	SXcp	S	VR, %	V, %
Красный, ед. яркости	нижний	33,49	56,98	40,72	0,829	4,229	57,7	10,4
	средний	33,15	50,74	38,54	0,643	3,114	45,6	8,1
	верхний	30,97	44,21	36,93	0,580	2,957	35,8	8,0
Зеленый, ед. яркости	нижний	32,49	56,96	40,23	0,833	4,251	60,8	10,6
	средний	32,55	48,34	38,12	0,612	2,964	41,4	7,8
	верхний	30,49	43,56	36,41	0,560	2,856	35,9	7,8
Синий, ед. яркости	нижний	33,74	59,89	42,14	0,873	4,454	62,1	9,9
	средний	33,95	47,70	39,90	0,608	2,944	34,5	7,4
	верхний	31,65	46,00	38,54	0,613	3,127	37,2	8,1
Тон, отн. ед.	нижний	0,659	0,895	0,715	0,008	0,039	33,0	5,5
	средний	0,635	0,827	0,691	0,021	0,101	27,8	14,6
	верхний	0,635	0,843	0,709	0,009	0,046	29,3	6,5
Насыщенность, отн. ед.	нижний	0,012	0,031	0,023	0,001	0,004	82,6	17,4
	средний	0,015	0,038	0,024	0,001	0,005	95,8	20,8
	верхний	0,019	0,048	0,029	0,001	0,005	100,0	17,2

Рис. 4. Цветовые характеристики радиально разнокачественных семянок A. cristophii Fig. 4. Color characteristics of radially heterogeneous seeds A. cristophii

В семянках нижнего яруса яркость синего цвета составила 42,14 ед., среднего – 39,9, верхнего – 38,54 ед. (рис. 4). Высокая единица яркости синего цвета семянок нижнего яруса говорит об их зрелости.

В целом, масштабные селекционные и семеноводческие эксперименты требуют оперативного измерения и обработки значительных фенотипических данных, в том числе и для характеристики семян. Изложенная методика морфометрии семян демонстрирует высокую производительность и точность измерений.

Заключение

В наших исследованиях цифровой морфометрический анализ позволил выявить матрикальную разнокачественность семян *А. cristophii*, обусловленную радиальной ярусностью их расположения в пределах соцветия. Анализ размерных характеристик (длина, ширина, средний размер) семян выявил тенденцию к снижению размера от нижнего яруса – к верхнему, что связано с неодинаковыми условиями питания и формирования семян.

Возможности программы позволяет определить окраски и оттенки поверхности семян, что является важнейшей характеристикой их качества. Анализ цветовых характеристик разнокачественных семян лука Кристофи (по цветовой модели RGB) выявил статистически значимое снижение показателей по всем цветовым каналам от нижнего яруса - к верхнему.

Высокая точность измерений по широкому ряду морфометрических параметров позволит в дальнейшем анализировать не только экологически и матрикально разнокачественные семена, а также метод успешно может применяться для решения ботанических задач, при систематике растений, в том числе по внешним параметрам семян. Цифровой морфометрический анализ – будущее в развитии новой техники и ее интеграции в многогранные системы биологии растений.

Об авторах:

Мусаев Фархад Багадыр оглы - доктор с.-х. наук, ведущий научный сотрудник

Прияткин Николай Сергеевич - кандидат техн. наук, старший научный сотрудник, зав сектором биофизики растений

Бухаров Александр Федорович – доктор с.-х. наук, зав. лаб. семеноведения, https://orcid.org/0000-0003-1910-5390 Иванова Мария Ивановна – доктор с.-х. наук, проф. РАН,

зав. лаб. селекции и семеноводства зеленных культур, https://orcid.org/0000-0001-7326-2157

Кашлева Анна Ивановна - кандидат с.-х. наук, старший научный сотрудник лаборатории селекции и семеноводства зеленных культур **Щукина Полина Алексеевна** – инженер сектора биофизики растений Белецкий Сергей Леонидович - кандидат техн. наук,

зам. директора по научной работе Ушакова О.В. – кандидат с.-х. наук, старший научный сотрудник лабораторно-аналитического отдела

About the authors:

Farhad B. Musaev - Doc. Sci. (Agriculture), Leading Researcher Nikolay S. Priyatkin - Cand. Sci. (Techn.), Senior Researcher,

Head of the Plant Biophysics Sector

Aleksander F. Bukharov – Doc. Sci. (Agriculture), Head of the Laboratory of Seed Science, https://orcid.org/0000-0003-1910-5390

Maria I. Ivanova – Doc. Sci. (Agriculture), Professor of the Russian Academy of Sciences,

Head. Laboratory of selection and seed production of green crops,

https://orcid.org/0000-0001-7326-2157

Anna I. Kashleva - Cand. Sci. (Agriculture), senior researcher at the laboratory of selection and seed production of green crops

Polina A. Schukina – engineer of the plant biophysics sector Sergey L. Beletsky – Cand. Sci. (Techn.),

deputy director for scientific work

Olga V. Ushakova - Cand. Sci. (Agriculture)

• Литература / References

- 1. Мусаев Ф.Б., Архипов М.В., Потрахов Н.Н. Анализ качества семян овощных культур методом рентгенографии. Известия Тимирязевской сельскохозяйственной академии. 2014;(4):18-27. [Musayev F.B., Arkhipov M.V., Potrakhov N.N. X-ray based seed quality analysis of vegetable crops. Izvestiya of Timiryazev Agricultural Academy. 2014;(4):18-27. (In Russ.)]
- 2. Бухаров А.Ф., Балеев Д.Н., Мусаев Ф.Б. Мягколучевая рентгеноскопия эффективный метод выявления "пустосемянности" овощных зонтичных культур. Пермский аграрный вестник. 2015;(1(9):6-11. [Bukharov A.F., Baleev D.N., Musaev F.B. Soft-ray radiography - effective method of identifying germlessness vegetable Umbrella cultures. Perm Agrarian Journal. 2015;(1(9):6-11. (In Russ.)] 3. Прияткин Н.С., Архипов М.В., Гусакова Л.П., Потрахов Н.Н., Кропотов Г.И., Цибизов И.А., Винеров И.А. Интроскопические методы исследования качества семенного материала: состояние проблемы и перспективы использования. Агрофизика. 2018;(2):29-39. [Priyatkin N.S., Arkhipov M.V., Gusakova L.P., Potrakhov N.N., Kropotov G.I., Tzibizov I.A., Vinerov I.A. Introsscopic methods of seed quality evaluation: state of problem and prospects of realization. Agrophysica. 2018;(2):29-39. (In Russ.)]
- 4. Sandeep Varma V., Kanaka Durga K., Keshavulu K. Seed image analysis: its applications in seed science research. International Research Journal of Agricultural Sciences. 2013;1(2):30-36.
- 5. Kapadia V.N., Sasidharan N., Patil K. Seed Image Analysis and Its Application in Seed Science Research. Advances in Biotechnology and Microbiology. 2017;7(2):1-3.
- 6. Granitto, P.M., Verdes, P.F., and Ceccatto, H.A. Large-scale investigation of weed seed identification by machine vision. Comput. Electron. Agric. 2005;47;15-24. doi: 10.1016/j.compag.2004.10.003
- 7. Pourreza, A., Pourrezab, H., Abbaspour-Farda, M. H., and Sadrniaa, H. Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Comput. Electron. Agric. 2012;83:102-108. doi: 10.1016/j.compag. 2012.02.005
- 8. Tanabata, T., Shibaya, T., Hori, K., Ebana, K., and Yano, M. SmartGrain: highthroughput phenotyping software for measuring seed shape through image analysis. Plant Physiol. 2012;4:1871–1880. doi: 10.1104/pp.112.205120
- 9. Herridge, R.P., Day, R.C., Baldwin, S., and Macknight, R.C. Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods. 2011;7:3. doi: 10.1186/1746-4811-7-3
- 10. Whan, A.P., Smith, A.B., Cavanagh, C.R., Ral, J.P.F., Shaw, L.M., Howitt, C A., et al. GrainScan: a low cost, fast method for grain size and colour measurements. 2014;10:1. 10.1186/1746-4811-10-Plant Methods. doi: 2310.4225/08/536302C43FC28
- 11. Bai, X.D., Cao, Z.G., Wang, Y., Yu, Z.H., Zhang, X.F., and Li, C.N. Crop segmentation from images by morphology modeling in the CIE L*a*b color space. Comput. Electron. Agric. 2013;99:21-34. doi: 10.1016/j.compag.2013.08.022
- 12. Wiesnerovб, D., and Wiesner, I. Computer image analysis of seed shape and seed color for flax cultivar description. Comput. Electron. Agric. 2008;61:126–135. doi: 10.1016/j.compag.2007.10.001
- 13. Chen, X., Xun, Y., Li, W., and Zhang, J. Combining discriminant analysis and neural networks for corn variety identification. Comput. Electron. Agric. 2010;71:48-53. doi: 10.1016/j.compag.2009.09.003
- 14. Zapotoczny, P. Discrimination of wheat grain varieties using image analysis and neural networks, Part I, single kernel texture. J. Cereal Sci. 2011;54:60-68. doi: 10.1016/i.ics.2011.02.012

- 15. Novaro, P., Colucci, F., Venora, G., and D'egidio, M.G. Image analysis of whole grains: a noninvasive method to predict semolina yield in durum wheat. Cereal Chem. 2001;78:217-221. doi: 10.1094/CCHEM.2001.78.3.217
- 16. Tahir, A.R., Neethirajan, S., Jayas, D.S., Shahin, M.A., Symons, S.J., and White, N.D.G. Evaluation of the effect of moisture content on cereal grains by digital image analysis. Food Res. Int. 2007;40:1140–1145. doi: 10.1016/j.foodres.2007.06.009 17. Sapirstein, H.D., Neuman, M., Wright, E.H., Shwedyk, E., and Bushuk, W. An instrumental system for cereal grain classification using digital image analysis. J. Cereal Sci. 1987;6:3-14. doi: 10.1016/S0733-5210(87)80035-8
- 18. Miller, N.D., Haase, N.J., Lee, J., Kaeppler, S.M., de Leon, N., and Spalding, E.P. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images. Plant J. 2016. doi: 10.1111/tpj.13320 [Epub ahead of print].
- 19. Sankaran, S., Wang, M., and Vandemark, G.J. Image-based rapid phenotyping of chickpeas seed size. Eng. Agric. Environ. Food. 2016;9:50-55. doi: 10.1016/j.eaef.2015.06.001
- 20. Huang, M., Wang, Q.G., Zhu, Q.B., Qin, J.W., and Huang, G. Review of seed quality and safety tests using optical sensing technologies. Seed Sci. Technol. 2015;43:337-366. doi: 10.15258/sst.2015.43.3.16
- 21. Williams, K., Munkvold, J., and Sorrells, M. Comparison of digital image analysis using elliptic fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica. 2013;190:99-116. doi: 10.1007/s10681-012-0783-0
- 22. Cervantes, E., Marthn, J.J., and Saadaoui, E. Updated methods for seed shape analysis. Scientifica. 2016:5691825. doi: 10.1155/2016/5691825
- 23. Jahnke, S., Roussel, J., Hombach, T., Kochs, J., Fischbach, A., Huber, G., et al. phenoSeeder - a robot system for automated handling and phenotyping of individual seeds. Plant Physiol. 2016;172:1358-1370. doi: 10.1104/pp.16.01122
- 24. Roussel, J., Geiger, F., Fischbach, A., Jahnke, S., and Scharr, H. 3D surface reconstruction of plant seeds by volume carving: performance and accuracies. Front. Plant. Sci. 2016;7:745. doi: 10.3389/fpls.2016.00745
- 25. Strange, H., Zwiggelaar, R., Sturrock, C., Mooney, S.J., and Doonan, J.H. Automatic estimation of wheat grain morphometry from computed tomography data. Funct. Plant Biol. 2015;42:452-459. doi: 10.1071/FP14068
- 26. Мусаев Ф.Б., Солдатенко А.В., Балеев Д.Н., Прияткин Н.С., Щукина П.А. Исследование разнокачественности семян овощных культур с использованием компьютерного анализа изображений. Агрофизика. 2019;(1):38-44. DOI: 10.25695/AGRPH.2019.01.05 [Musaev F.B., Soldatenko A.V., Baleev D.N., Priyatkin N.S., Shchukina P.A. Studies of vegetable seeds heterogeneity with use of computer image analysis. Agrophysica. 2019;(1):38-44. (In Russ.) DOI: 10.25695/AGRPH.2019.01.05]
- 27. Мусаев Ф.Б., Прияткин Н.С., Архипов М.В., Щукина П.А., Бухаров А.Ф., Иванова М.И. Цифровая морфометрия разнокачественности семян овощных культур. Картофель и овощи. 2018;(6):35-37. [Musaev F.B., Pleitkin N.S., Arkhipov M.V., Schukina P.A., Bukharov A.F., Ivanova M.I. Digital morphometry of different quality seeds of vegetable crops. Potatoes and vegetables. 2018; (6): 35-37. (In Russ.)]
- 28. Волкова Г.А., Скупченко Л.А., Вокуева А.В., Скроцкая О.В., Моторина Н.А., Рябинина М.Л. Редкие виды растений в культуре на Европейском Севере. Екатеринбург: УрО РАН. 2009. 154 с. [Volkova G.A., Skupchenko L.A., Vokueva A.V., Skrotskaya O.V., Motorina N.A., Ryabinina M.L. Rare plant species in culture in the European North. Ekaterinburg: Ural Branch of the Russian Academy of Sciences. 2009. 154 p. (In Russ.)]