УДК 581.4:581.6:582.622.1:577.118:577.164 DOI:10.18619/2072-9146-2017-5-57-61

ХАУТТЮЙНИЯ (Houttuynia cordata Thunb.) – HOBAЯ ДЛЯ РОССИИ OBOЩНАЯ И ЛЕКАРСТВЕННАЯ КУЛЬТУРА (МОРФОЛОГИЧЕСКИЕ ОСОБЕННОСТИ И БИОХИМИЧЕСКИЙ СОСТАВ)

HOUTTUYNIA (Houttuynia cordata Thunb.) – NEW VEGETABLE AND MEDICINAL CROP FOR RUSSIA (MORPHOLOGICAL FEATURES AND BIOCHEMICAL COMPOSITION)

Фотев Ю.В. 1 – с.н.с., кандидат с.-х. наук Кукушкина Т.А.1 – с.н.с.

кукушкина Т.А. — с.н.с. Чанкина О.В. 2 — с.н.с., кандидат хим. наук

Белоусова В.П. 1 – н.с.

1 ФБГНУ Центральный Сибирский Ботанический сад СО РАН 630090, Россия, г. Новосибирск

ул. Золотодолинская, 101 E-mail: fotev_2009@ngs.ru

² ФБГНУ Институт химической кинетики и горения им. В.В. Воеводского СО РАН

630090, Россия, г. Новосибирск ул. Институтская, 3

E-mail: chankina@kinetics.nsc.ru

Fotev Y.V.1, Ph.D. in Agriculture, Senior Researcher Kukushkina T.A.1, Senior Researcher Chankina O.V.2, Ph.D. in Chemistry, Senior Researcher Belousova V.P.1, Researcher

¹ Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences

Zolotodolinskaya St., 101, Novosibirsk, 630090, Russia E-mail: fotev_2009@ngs.ru, tel.: (383)339-97-41

² Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the

Russian Academy of Sciences

Institutskaya St., 3, Novosibirsk, 630090, Russia

E-mail: chankina@kinetics.nsc.ru

Учитывая важное значение, придаваемое хауттюйнии Hauttuynia cordata Thunb. в качестве овощного и лекарственного растения в странах юго-восточной Азии, а также возможности его выращивания в условиях умеренного климата, исследовали в условиях теплицы ФБГНУ ЦСБС СО РАН, г. Новосибирск (54°49'33" с. ш. 83°06'34" в. д.) морфологические и биохимические признаки растений двух форм (обычной и вариегатной) вида. В качестве субстрата использовали верховой торф. Содержание в корневищах и листьях макро- и микроэлементов определяли методом РФА-СИ. За три месяца выращивания фитомасса растений обычной формы увеличилась с 4,7±0,84 г до 30,3±8,00 г, т.е. в 6,4 раза, при этом на долю корневищ приходилось 51-56% от общей фитомассы. Размер листьев вариегатной формы оказался на 15-29% меньше, по сравнению с обычной формой. Высота растений была 25,9±0,98 см у обычной и 29,0±0,62 см – у вариегатной формы; длина и ширина листа, соответственно, 6,6±0,26 х 5,9±0,25 и 4,70±0,19 х 4,90±0,17 см. Растения обычной формы формировали верхушечное, продолговатое, плотное, початковидно-колосовидное соцветие с цветками, лишенными околоцветника, с тремя тычинками и 3-4 сросшимися плообразующими синкарпный долистиками, Вариегатная форма соцветий не образовывала. В листьях H.cordata накапливается 35,6 мг/% аскорбиновой кислоты, в корневищах – 14,2 мг/%. В наибольшей степени листья H.cordata концентрируют Mn, Fe и Cu, а корни – Fe, Co, Cu и Zn. Необходимо дальнейшее изучение этого растения и с целью позиционирования его в качестве перспективного функционального продукта питания.

Ключевые слова: хауттюйния, Houttuynia cordata, морфологические признаки, биохимический состав, РФА-СИ, макро- и микроэлементы.

Для цитирования: Фотев Ю.В., Кукушкина Т.А., Чанкина О.В., Белоусова В.П. Хауттюйния (*Houttuynia cordata* Thunb.) – новая для России овощная и лекарственная культура (морфологические особенности и биохимический состав). *Овощи России*. 2017;(5):57-61. DOI:10.18619/2072-9146-2017-5-57-61

Taking into account the importance of Hauttuynia cordata as a vegetable and medicinal plant in the South-East Asia, and the possibility of its cultivation in a temperate climate, the morphological and biochemical features of the plants belonging to 'common' and 'variegated' forms were studied in conditions of a greenhouse. We used a peat as a substrate for growing plants. The content of macro- and microelements in rhizomes and leaves was estimated with use of the synchrotron radiation induced X-ray fluorescence analysis (SR-XRF). During three months of cultivation, the total phytomass of 'common form' increased from 4.7 \pm 0.84 g to 30.3 \pm 8.00 g, i.e. in 6.4 times, while in rhizomes it reached 51-56% out of the total phytomass. The size of the leaves of 'variegated form' was 15 - 29% less, as compared with the 'usual form'. The height of the plants was 25.9 ± 0.98 cm in the 'usual' and 29.0 ± 0.62 cm in the 'variegated' form, the length and width of the leaf blade were $6.6 \pm 0.26 \times 5.9 \pm 0.25$ and $4.70 \pm 5.00 \times 4.90 \pm 5.50$ cm, respectively. Plants of the 'common' form formed apical, elongated, dense, ctenopod spine inflorescence with flowers lacking perianth, with three stamens and 3-4 fused carpal forms forming syncarpous gynoecium. 'Variegated' form did not form any inflorescences. H.cordata leaves contain 35, 6 mg% ascorbic acid, rhizomes - 14.2 mg%. Leaves of H.cordata mainly accumulated Mn, Fe and Cu, and the roots - Fe, Co, Cu and Zn. It is necessary to carry out the further study on new promising functional food.

Keywords: Houttuynia cordata, morphological features, biochemical features, synchrotron radiation induced X-ray fluorescence analysis (SR-XRF), macro and microelements.

For citation: Fotev Y.V., Kukushkina T.A., Chankina O.V., Belousova V.P. Houttuynia (*Houttuynia cordata* Thunb.) – new vegetable and medicinal crop for Russia (morphological features and biochemical composition). *Vegetable crops of Russia*. 2017;(5):57-61. (In Russ.) DOI:10.18619/2072-9146-2017-5-57-61

Юго-восточной Азии, особенно, в ЭЯпонии и Китае, как нигде в мире понятия «продукт питания» «лекарство» часто сливаются. формируя использование растений в качестве «лекарственной пищи» [1]. ведущих лекарственных Среди растений, использующихся в Юговосточной Азии в качестве овощных культур хауттюйния сердцевидная (Houttuynia cordata Thunb.) или рыбья мята (кит.: Yú xĩng cǎo - 鱼腥草), относящаяся к семейству савруровые (Saururaceae Rich. ex T.Lestib.), занимает особое место.

Вид распространен, преимущественно, в центральных, юго-восточных и юго-западных регионах Китая, Японии, Корее и других странах Юговосточной Азии, где произрастает на увлажненных, затененных участках [2], на высоте от 300 до 2600 м [3]. В Японии рыбья мята - одно из ведущих лекарственных и пряно-ароматических растений, объем выращивания которого достигает 16100 кг (2002 год) [4]. Издавна в этой стране корни высушивали и использовали в лекарственных целях [5]. В китайской провинции Юньнань одна из групп тибето-бирманских народов (Shuhi) с давних пор использовала целые растения рыбьей мяты, включающие корневища, вместе с перцем чили [6]. Тибетцы, живущие в уездах Шангри-Ла и Вэйси этой же провинции КНР, обычно используют листья и корни хауттюйнии под названием «жерген» в свежем и обжаренном виде [7]. Во Вьетнаме рыбью мяту употребляют как салатное растение и в качестве лекарственной культуры [8]. В Бутане вид входит в число наиболее распространенных дикорастущих съедобных растений [9]. Для приготовления популярного здесь соуса Чатни молодые нежные листья и корни нарезают на небольшие кусочки, добавляя перец чили, лук, чеснок, имбирь и соль.

Houttuynia cordata Thunb - единственный вид в роде Houttuynia Thunb. Число хромосом 2n=96 [10], хотя в разных популяциях встречаются цитотипы с 2n=72, 80, 96, 112 и 128 [11]. ISSR анабольшого числа H.cordata, собранных в центральной, юго-восточной и юго-западной части Китая показал, что базальная группа состоит из популяций, происходящих из юго-западной части Китая, а остальные распределены равномерно и имеют тренд распределения на восток [2]. Структура генетического разнообразия популяций позволяет предположить, что вид, вероятно, сохранился в ледниковый период на юго-западе Китая и в дальнейшем распространялся восточном направлении.

H.cordata – многолетнее травянистое растение с тонкими шнуровидными корнями. Корневища расползаются горизонтально в поверхностном слое почвы. Высота растений 20-50 см, стебли красноватой окраски, несут очередно расположенные листья длиной 4-8 см и шириной 3-6 см, овально-сердцевидной формы [12]. Соцветие плотное колосо-

видное, состоящее из 45-70 сидячих цветков [13]. Цветки мелкие, перигинные с 4 (реже 6-8) белыми прицветниками, напоминающими лепестки, тычинок 3, реже 4, пыльники 2-гнездные [14]. Высвобождаемая из пыльников пыльца представлена преимущественно монадами [15]. Пыльцевые зерна мелкие (размер 18-20 мкм), гетерополярные, билатерально-симметричные, евидной формы, монокольпатные, апертура расположена на дистальном полюсе, с негладкой (рельефной) мембраной апертуры, тектум перфорированный. Цитологическое изучение H.cordata показало, что этот вид является полностью или почти полностью с мужской стерильностью [16]. Отмечены нарушения цитокинеза, приводящие к широкому варьированию формы И размера микроспор. Наблюдалась дегенерация микроспор.

Растение содержит флавоноиды и другие полифенольные соединения, пиридиновые алкалоиды, апорфин. органические и жирные кислоты, стеролы и микроэлементы [3]. Сообщается [3] о 346 летучих компонентах эфирного масла H.cordata. Основным его компонентом является 4-тридеканон [17]. Кроме того, во всех частях растения обнаружен основной ациклический монотерпен мирцен. В корневищах доминирующий монотерпен – β -пинен. В этанольном экстракте целого растения общее содержание фенольных веществ - 45,74 мг/г эквивалента таниновой кислоты, танинов 33,29 мг/г, флавоноидов 104,55 мг/г эквивалента рути-

Растение представляет собой потенциальный источник антиоксидантов и . широко используется в народной медицине при лечении значительного числа болезней человека, таких как сердечнососудистые и онкологические заболевания, анемия, сахарный диабет, дизентерия и др. [18]. Исследованиями подтвержден антибактериальный эффект рыбьей мяты против паразитических видов грибов рода Trichophyton, бактерий из рода Staphylococcus Rosenbach и микобактерий туберкулеза. Недавнее исследование показало, что припарки на основе листьев Houttuynia cordata с высокой эффективностью используют для лечения гнойных поражений кожи. Так, этанольный экстракт H.cordata проявил активный положительный эффект против Staphylococcus aureus, вызывающего гнойные заболевания кожи [19]. Содержащийся в рыбьей мяте кверцетин-3-рамнозид подавляет репликацию вируса гриппа серотипа А WS/33 в начальной стадии инфекции [20].

В исследовании стрептозоцин-индуцированного диабета у крыс установлено, что этаноловый экстракт H.cordata в дозе 250 мг/кг может рассматриваться в качестве нового фактора при лечении этого заболевания, оказывающего также положительный эффект на функции печени [21]. Данные, полученные в КНР, показали, что фармакологическая эффективность этого растения проявляется также при заболеваниях почек респираторных проблемах [22]. Установлено, что экстракт листьев H.cordata подавляет возрастную гиперплазию простаты у мужчин [23]. В штате Аруначал-Прадеш на северо-востоке Индии измельченные части растения применяют для изгнания гельминтов из организма человека [24]. В этномедицинских практиках индийского штата Ассам листья этого вида представители народности Ахом с давних пор использовали для лечения дизентерии [25]. В Аргентине последователи китайской народной медицины широко используют рыбью мяту для улучшения когнитивных функций и в качестве адаптогена, а также в «антиэйдж» терапии [26]. Есть данные [27] о хороших перспективах использования H.cordata для лечения ожирения. Экстракт H. cordata подавляет образование активных форм кислорода, вызванных поступлением бензопирена

Анализ активности патентования в Великобитании, включающего генетические ресурсы, показал наличие патента на косметические и лекарственные средства в комбинации с *H.cordata* (патент US6280751B120010828: 31-33) [29].

В рыбоводстве эфирное масло из Н. cordata проявило себя хорошим потенциальным стимулятором роста для рыбы и, вероятно, может заменить антибиотики при выращивании гибридной красной тиляпии (Oreochromis mossambicus Linn. х Oreochromis niloticus Linn.) [30].

В России хауттюйния – довольно распространенное декоративное растение. Среди садоводов популярна его пестролистная форма 'Chameleon', выращиваемая в том числе на юге Западной Сибири в открытом грунте (Новосибирская область.). Данный вид включен в состав эргазиофитов в Белоруси [31].

С учетом важного значения, придаваемого H.cordata в качестве овощного и лекарственного растения в странах юго-восточной Азии, а также возможности его широкого культивирования в условиях умеренного климата целесообразно оценить биохимический состав хауттюйнии с перспективой интродукции вида в России для получения функциональных продуктов питания.

Материал и методика

В качестве материала для исследования использовали форму H.cordata из провинции Юньнань (КНР) и местную декоративную вариегатную форму, выращиваемую садоводами в открытом грунте Новосибирской области. В качестве контроля использовали томат сорта Дельта 264 и огурец F_1 Регина.

Растения выращивали в условиях теплицы ФГБУН Центрального сибирского ботанического сада СО РАН (ЦСБС СО РАН), г. Новосибирск (54°49′33″ с. ш. 83°06′34″ в. д.) в сосу-

дах объемом 4 л на тепличном грунте, приготовленном на основе верхового торфа. Подкормки проводили один раз в три недели удобрением «Растворин» (марка 10-5-20-5) производства Буйского химического завода (https://bhz.ru/) в концентрации 0,15% с расходом 0,5 л на сосуд.

Исследовали морфометрические признаки растений: высоту растений, длину и ширину листа, длину черешка, прилистника и междоузлий, диаметр корневища. Микроскопическое исследование структурных элементов соцветия и цветка выполнили с помощью электронного сканирующего микроскопа Hitachi TM-1000 (Япония).

Использовали традиционные методы биохимического исследования растений [32]. Определение аскорбиновой кислоты проводили титриметрическим методом, основанным на ее редуцирующих свой-Тильманса). ствах (реакция Содержание макро- и микроэлементов определяли только в обычной (не вариегатной) форме методом рентгенофлуоресцентного анализа использованием синхротронного излучения (РФА СИ) на станции элементного анализа Сибирского Центра синхротронного и терагерцового излучения Института ядерной физики им. Г.И. Будкера СО РАН (накопитель ВЭПП-3).

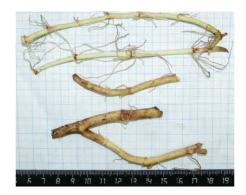


Рис. 2. Корневище H.cordata Thunb.

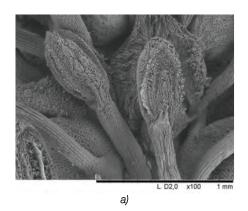
Статистическая обработка опытных данных выполнена стандартным способом [33].

Результаты

В период активного роста хауттюйния отличается интенсивным нарастанием зеленой фитомассы и корневищ. Так, за три месяца выращивания от посадки нарезанных побегов с корнями до развитых растений с мощными разветвленными корневищами в период с 28.07.17 по 25.10.17 их масса увеличилась с 4,7±0,84 г до 30,3±8,00 г, т.е. в 6,4 раза. При этом на долю корневищ приходится 51 – 56% от общей фитомассы.

Таблица 1. Морфометрические показатели растений двух форм H.cordata

	Формы					
	обычная	вариегатная				
Высота растений, см	25,9±0,98	29,0±0,62				
Длина листа, см	6,6±0,26	4,70±0,19				
Ширина листа, см	5,9±0,25	4,90±1,17				
Длина прилистника, см	1,5±0,05	1,50±0,06				
Длина черешка, см	3,6±0,15	3,00±0,12				
Длина междоузлия, см	4,1±0,26	3,50±0,21				
Диаметр корневища, мм	3,8±0,23	3,19±0,20				



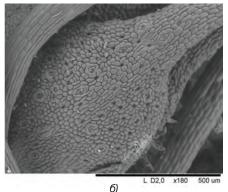

Рис. 1. Побег Н. cordata Thunb., слева – обычной, справа – вариегатной формы.

Рис. 3. Соцветие и цветки H.cordata.

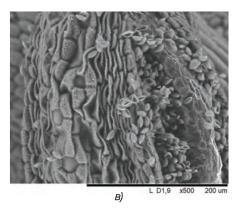


Рис. 4. Микрофотографии частей цветка H.cordata: а – зачаточные цветки, б – завязь, в – часть пыльника с пыльцой.

Таблица 2. Содержание макро- и микроэлементов в фитомассе Houttuynia cordata Thunb., определенное методом РФА СИ, мкг/г

	К	Ca	V	Cr	Mn	Fe	Co	Cu	Zn	Br	Rb	Y	Zr	Nb	Мо
листья	30690	15534	0,75	3,0	44,5	155,5	0,1	8,5	37,5	1,9	38,0	-	3,15	-	3,7
корни	18508	5921	0,5	14,3	29	426	0,2	7,4	121	1,1	24,5	0,98	12,1	0,6	3,8
томат (плоды)	30847	2727	0,03	41,5	7,8	38	0,03	1,7	18,5	4,4	4,3	н.о.	0,7	0,6	0,2
огурец (плоды)	26668	4884	0,13	66,6	14,3	44,8	0,02	2,9	51,2	7,4	7,5	н.о.	0,95	1,76	0,81

Внешний вид побегов двух форм *H.cordata* и корневища показан, соответственно, на рисунках 1 и 2. Листья сердцевидной формы, с прилистниками, приросшими к черешку. Морфометрическая характеристика растений приведена в табл.1.

В сравнении с данными, полученными Кumar et al. (2014) [12], высота растений, размер листьев обычной и вариегатной формы рыбьей мяты в ЦСБС СО РАН входит в диапазон изменчивости значений для этого вида. При этом размер листьев вариегатной формы оказался на 15-29% меньше, по сравнению с обычной формой.

Цветение продолжалось в течение трех месяцев: с апреля до конца июня. Цветки у обычной формы H.cordata мелкие, лишенные околоцветника, с тремя тычинками, формирующие верхушечное, продолговатое, плотное, початковидно-колосовидное соцветие (рис. 3). Обертка соцветия венчиковидная, состоит из четырех лепестковидных, распростертых, яйцевидноэллиптических, белых прицветников, что делает соцветие похожим на отдельный крупный цветок, как у сложноцветных. Тычинок - 3, плодолистики в числе 3-4 штук, сросшиеся, образуют синкарпный гинецей. Вариегатная форма цветков не обра-

На микрофотографиях частей цветка *H.cordata* (рис.4) показаны зачаточные цветки (а), завязь (б) и часть пыльника с пыльцой (в). На рис.4 (б) видны расположенные на завязи устьица.

Данные биохимического анализа, проведенного в ЦСБС СО РАН, показали, что листья Н.согdata накапливают 35,6 мг% аскорбиновой кислоты, а корень – 14,2 мг% (сухого вещества в листьях 10,1%, в корневищах – 13,2%). Наши данные свидетельствуют о более высоком уровне накопления аскорбиновой кислоты в фитомассе растений вида, по сравнению с данными исследования, проведенного в КНР (7,92 мг%) [34].

Содержание элементов так называемого «кроветворного комплекса» [35] (Со, Си, Fe, Мn) в листьях и корневищах рыбьей мяты оказалось в 2,9-11,2 раза более высоким, по сравнению с аналогичными показателями для плодов томата и огурца (табл. 2). Корни этого растения способны накапливать Zn в концентрации в 6,5 раз превышающей аналогичный показатель плодов томата. В наибольшей степени листья H.cordata концентрируют Mn, Fe и Cu, а корни – Fe, Co, Cu Zn. Наши данные подтвердили результаты китайских исследователей [36] о резко выраженной способности рыбьей мяты накапливать Fe. При изучении в США минерального состава рыбьей мяты, специально выращиваемой в штате Калифорния хмонгами (этнической группой из Лаоса) в качестве приправы и лекарственного

растения, также отмечено повышенное содержание в растении Fe, Mn, а также Mg [37].

Заключение

Хауттюйния отличается интенсивным нарастанием зеленой фитомассы и корневищ. За три месяца выращивания от посадки нарезанных побегов с корнями до развитых растений с мощными корневищами их масса увеличивается в 6,4 раза. При этом на долю корневищ приходится 51-56% от общей фитомассы. Размер листьев вариегатной формы оказался на 15-29% меньше по сравнению с обычной формой. Анализ компонентов фитомассы хауттюйнии показал достаточно высокое содержание аскорбиновой кислоты в листьях (35,6 мг%) и среднее в корнях. Листья и корни этого растения накапливают значительное количество элементов кроветворного комплекса (Co, Cu, Fe, Mn) и Zn, превышающее показатели плодов традиционных культур - томата и огурца в 2,9-11,2 раза. Это может служить основанием к дальнейшему изучению этого растения и позиционированию его в качестве перспективного функционального продукта питания.

При подготовке публикации использовались материалы биоресурсной научной коллекции ЦСБС СО РАН «Коллекции живых растений в открытом и закрытом грунте», УНУ № USU 440534.

- 1. Chen J., Weng W. Medicinal food: the Chinese perspective // J.Med.Food. 2009. V.1, N2. P.117-122. doi:10.1089/jmf.1998.1.117.
- 2. Wei L., Wu X.-J. Genetic variation and population differentiation in a medical herb Houttuynia cordata in China revealed by Inter-Simple Sequence Repeats (ISSRs) // Int. J. Mol. Sci. 2012, 13, 8159-8170
- 3. Fu J., Dai L., Lin Z., Lu H. Houttuynia cordata Thunb: a review of phytochemistry and pharmacology and quality control // Chinese Medicine. 2013. V.4. P.101-123.
- 4. Handa S. S., Rakesh D. D., Vasisht K. Compendium of medicinal and aromatic plants. Trieste, Italy: ICS-UNIDO. 2006. Vol. II. 296 p.
- 5. Useful plants of Japan (described and illustrated). Vol 1. Agricultural Society of Japan, Tameike I., Akasaka, Tokyo.1895. P.119.
- 6. Weckerle C.S., Huber F.K., Yongping Y. et al. Plant knowledge of the Shuhi in the Hengduan Mountains, Southwest China // Economic Botany. 2006. V.60, N1. P.3–23
 7. Ju Y, Zhuo J, Liu B, Long C. Eating from the wild: diversity of wild edible plants used by Tibetans in
- Shangri-la region, Yunnan, China // Journal of Ethnobiology and Ethnomedicine. 2013;9:28. doi:10.1186/1746-4269-9-28.
- 8. Zeven A.C., Wet J.M.J. Dictionary of cultivated plants and their regions of diversity: excluding most ornamentals, forest trees and lower plants. Wageningen, Holland: Pudoc. 1982. P.63
- 9. Tshering K., Thapa L., Matsushima K. et al. Edible wild plants of Bhutan and their contribution to food and nutrition security// In: Promotion of underutilized indigenous food resources for food security and nutrition in Asia and the Pacific/ Edited by P.Durst, N.Bayasgalanbat: FAO Edition, Bangkok.
- $10.\ Okada\ H.\ Karyomorphology\ and\ relationships\ in\ some\ genera\ of\ Saururaceae\ and\ Piperaceae\ //$ Bot. Mag. Tokyo. 1986. V.99. P.289-299.
- 11. Oginuma K., Hisako S., Yoshiko K. et al. Intraspecific polyploidy of Houttuynia cordata and evolution of chromosome number in the Saururaceae // Chromosome Botany. 2007. V. 2, N 3. P 87-91.
- 12. Kumar M., Prasad S.K., Laloo D., Joshi A., Hemalatha S. Pharmacognostical and phytochemical standardization of Houttuynia cordata Thunb.: a potent medicinal herb of North-Eastern India and China // Phcog J. 2014.V.6, N1. P.34-42.
- 13. Tucker S.C. Inflorecsence and floral development in Houttuynia cordata (Saururaceae) // Amer.J.Bot. 1981. V.68. P. 1017-1032.
- 14. Xia N., Brach A.R. Flora of China (Saururaceae). St. Lois: Science Press, Beijing and Missouri Botanical Garden Press. 1999. V.4. P.108-109.
- 15. Lu L., Wortley A.H., Li D.-Z., Wang H., Blackmore S. Evolution of angiosperm pollen. 2. Basal angiosperms // Ann. Missouri Bot. Gard. 2015. V.100. P.227-269.
- 16. Takahashi M. Microsporogenesis in a parthenogenetic species, Houttuynia cordata Thunb. (Saururaceae) // Botanical Gazette . 1986. V.147, N1. P.47-54
- 17. Asakawa Y., Tomiyama K., Sakurai K., Kawakami Y., Yaguchi Y. Volatile compounds from the different organs of Houttuynia cordata and Litsea cubeba (L. citriodora) // J. Oleo Sci. 2017. P.1-7. doi: 10.5650/jos.ess17049.
- 18. Rathi R.S., Roy S., Misra A.K., Singh S.K. Ethnobotanical notes on Houttuynia cordata Thunb. in North-eastern region of India // Ind. J. Nat. Prod. Res. 2013. V.4, N4. P. 432-435.
- 19. Sekita Y., Murakami K., Yumoto H., Amoh T., Fujiwara N., Ogata S., Matsuo T., Miyake Y., Kashiwada Y. Preventive effects of Houttuynia cordata extract for oral infectious diseases // BioMed Research International. Volume 2016. ID 2581876, 8pages, http://dx.doi.org/10.1155/ 2016/2581876.
- 20. Kapoor R., Sharma B., Kanwar S.S. Antiviral phytochemicals: an overview // Biochem. Physiol. 2017. V.6, N2. 7 pages; doi: 10.4172/2168-9652.1000220.
- 21. Poolsil P., Promprom W., Chusri Talubmook C. Anti-hyperglycemic and anti-hyperlipidemic effects of extract from Houttuynia cordata Thumb. in streptozotocin-induced diabetic rats // Pharmacogn J. 2017. V.9, N3. P.382-387.
- 22. Chang N., Luo Z., Li D., Song H. Indigenous uses and pharmacological activity of traditional medicinal plants in Mount Taibai, China // Evidence-Based Complementary and Alternative Medicine.V.2017. Article ID 8329817. 11 pages. https://doi.org/10.1155/2017/8329817.
- 23. Koyama T. New botanical materials with anti-androgenic activity/ In: Prostate Cancer -Scientific Reports and Case Studies/ Ed.: Spiess P.E. InTech. 2011. P.193-206.
- Lego Y.J., Payum T., Rathinavel S., Jayakumar K. Diversity of 24. Jeyaprakash K., medicinal plants used by Adi community in and around area of D' Ering Wildlife Sanctuary, Arunachal
- Pradesh, India // World Scientific News. 2017. V.65. P.135-159.
 25. Bailung B., Puzari M. Traditional use of plants by the Ahoms in human health management in upper Assam, India // Journal of Medicinal Plants Studies. 2016. V.4, N2. P.48-51.
- 26. Hurrell J.A., Puentes J.P. Plant species and products of the traditional Chinese phytotherapy in the Ciudad Autynoma de Buenos Aires, Argentina // Ethnobiology and Conservation. 2017. V.6, N1. P.143
- 27. Patra S., Nithya S., Srinithya B., Meenakshi S.M. Review of medicinal plants for anti-obesity activity // Translational Biomedicine. 2015. V. 6, N3. P.1-22.
- 28. Doi K.: Mitoma C.: Nakahara T. et al. Antioxidant Houttuynia cordata extract upregulates filaggrin expression in an aryl hydrocarbon-dependent manner // Fukuoka Igaku Zasshi. 2014. V. 105. P.
- 29. Oldham P, Barnes C., Hall S. A review of UK patent activity for genetic resources and associated knowledge. 2013. http://www.ip-watch.org/weblog/wp-
- and the state of t (Oreochromis mossambicus Linn. Y Oreochromis niloticus Linn.)// International Journal of Fisheries and Aquatic Studies. 2016. V.4, N3. P.677-684.
- 31. Дубовик Д.В. Роль эргазиофитов в формировании флоры Беларуси // Сб.ст. 11-й Межд. науч.-практ.конф. «Актуальные проблемы изучения и сохранения фито- и микобиоты», 12-14 ноября 2013 г., Минск: Изд.центр БГУ. 2013. С.24-27.
- 32. Ермаков А.И., Арасимович В.В., Ярош Н.П. и др. Методы биохимического исследования растений. Л.: Колос. 1987. 430c.
- 33. Лакин Г.Ф. Биометрия. М: Высшая школа. 1990. 352с.
- 34. Liu C., Zhao Y., Li X., Jia J., Chen Y., Hua Z. Antioxidant capacities and main reducing substance contents in 110 fruits and vegetables eaten in China // Food and Nutrition Sciences. 2014. V.5. P. 293-307
- 35. Круглов Д.С. Индивидуальная изменчивость элементного состава надземной части Pulmonaria mollis Hornem. // Химия растительного сырья. 2010. №1. С. 131–136.
- 36. Zhi-xi G. Content determination of microelements and heavy metal in Houttuynia cordata by dry ashing atomic absorption spectrometry // Journal of Anhui Agricultural Sciences. 2009. N16. P. 7322-7323
- 37. Corlett J.L., Clegg M.S., Keen C.L., Grivetti L.E. Mineral content of culinary and medicinal plants cultivated by Hmong refugees living in Sacramento, California // International Journal of Food Sciences and Nutrition, 2002, V.53, N2. P.117-128.

References

- 1. Chen J., Weng W. Medicinal food: the Chinese perspective // J.Med.Food. 2009. V.1, N2. P.117-122. doi:10.1089/jmf.1998.1.117.
- 2. Wei L., Wu X.-J. Genetic variation and population differentiation in a medical herb Houttuynia cordata in China revealed by Inter-Simple Sequence Repeats (ISSRs) // Int. J. Mol. Sci. 2012, 13, 8159-8170
- 3. Fu J., Dai L., Lin Z., Lu H. Houttuynia cordata Thunb: a review of phytochemistry and pharmacology and quality control // Chinese Medicine. 2013. V.4. P.101-123.
- 4. Handa S. S., Rakesh D. D., Vasisht K. Compendium of medicinal and aromatic plants. Trieste, Italy: ICS-UNIDO. 2006. Vol. II. 296 p.
- 5. Useful plants of Japan (described and illustrated). Vol 1. Agricultural Society of Japan, Tameike I., Akasaka, Tokvo, 1895, P.119.
- 6. Weckerle C.S., Huber F.K., Yongping Y. et al. Plant knowledge of the Shuhi in the Hengduan Mountains, Southwest China // Economic Botany. 2006. V.60, N1. P.3–23
 7. Ju Y, Zhuo J, Liu B, Long C. Eating from the wild: diversity of wild edible plants used by Tibetans in
- Shangri-la region, Yunnan, China // Journal of Ethnobiology and Ethnomedicine. 2013;9:28. doi:10.1186/1746-4269-9-28.
- 8. Zeven A.C., Wet J.M.J. Dictionary of cultivated plants and their regions of diversity: excluding most ornamentals, forest trees and lower plants. Wageningen, Holland: Pudoc. 1982. P.63
- 9. Tshering K., Thapa L., Matsushima K. et al. Edible wild plants of Bhutan and their contribution to food and nutrition security// In: Promotion of underutilized indigenous food resources for food security and nutrition in Asia and the Pacific/ Edited by P.Durst, N.Bayasgalanbat: FAO Edition, Bangkok.
- $10. \ Okada \ H. \ Karyomorphology \ and \ relationships \ in some \ genera \ of \ Saururaceae \ and \ Piperaceae \ //$ Bot. Mag. Tokyo. 1986. V.99. P.289-299.
- 11. Oginuma K., Hisako S., Yoshiko K. et al. Intraspecific polyploidy of Houttuynia cordata and evolution of chromosome number in the Saururaceae // Chromosome Botany. 2007. V. 2, N 3. P 87-91.
- 12. Kumar M., Prasad S.K., Laloo D., Joshi A., Hemalatha S. Pharmacognostical and phytochemical standardization of Houttuynia cordata Thunb.: a potent medicinal herb of North-Eastern India and China // Phcog J. 2014.V.6, N1. P.34-42.
- 13. Tucker S.C. Inflorecsence and floral development in Houttuynia cordata (Saururaceae) // Amer.J.Bot. 1981. V.68. P. 1017-1032.
- 14. Xia N., Brach A.R. Flora of China (Saururaceae). St. Lois: Science Press, Beijing and Missouri Botanical Garden Press. 1999. V.4. P.108-109.
- 15. Lu L., Wortley A.H., Li D.-Z., Wang H., Blackmore S. Evolution of angiosperm pollen. 2. Basal angiosperms // Ann. Missouri Bot. Gard. 2015. V.100. P.227-269.
- 16. Takahashi M. Microsporogenesis in a parthenogenetic species, Houttuynia cordata Thunb. (Saururaceae) // Botanical Gazette . 1986. V.147, N1. P.47-54
- 17. Asakawa Y., Tomiyama K., Sakurai K., Kawakami Y., Yaguchi Y. Volatile compounds from the different organs of Houttuynia cordata and Litsea cubeba (L. citriodora) // J. Oleo Sci. 2017. P.1-7. doi: 10.5650/jos.ess17049.
- 18. Rathi R.S., Roy S., Misra A.K., Singh S.K. Ethnobotanical notes on Houttuynia cordata Thunb. in North-eastern region of India // Ind. J. Nat. Prod. Res. 2013. V.4, N4. P. 432-435.
- 19. Sekita Y., Murakami K., Yumoto H., Amoh T., Fujiwara N., Ogata S., Matsuo T., Miyake Y., Kashiwada Y. Preventive effects of Houttuynia cordata extract for oral infectious diseases // BioMed Research International. Volume 2016. ID 2581876, 8pages, http://dx.doi.org/10.1155/ 2016/2581876.
- 20. Kapoor R., Sharma B., Kanwar S.S. Antiviral phytochemicals: an overview // Biochem. Physiol. 2017. V.6, N2. 7 pages; doi: 10.4172/2168-9652.1000220.
- 21. Poolsil P., Promprom W., Chusri Talubmook C. Anti-hyperglycemic and anti-hyperlipidemic effects of extract from Houttuynia cordata Thumb. in streptozotocin-induced diabetic rats // Pharmacogn J. 2017. V.9, N3. P.382-387.
- 22. Chang N., Luo Z., Li D., Song H. Indigenous uses and pharmacological activity of traditional medicinal plants in Mount Taibai, China // Evidence-Based Complementary and Alternative Medicine.V.2017. Article ID 8329817. 11 pages. https://doi.org/10.1155/2017/8329817.
- 23. Koyama T. New botanical materials with anti-androgenic activity/ In: Prostate Cancer Original Scientific Reports and Case Studies/Ed.: Spiess P.E. InTech. 2011. P.193-206.
- Lego Y.J., Payum T., Rathinavel S., Jayakumar K. Diversity of 24. Jeyaprakash K., medicinal plants used by Adi community in and around area of D' Ering Wildlife Sanctuary, Arunachal
- Pradesh, India // World Scientific News. 2017. V.65. P.135-159. 25. Bailung B., Puzari M. Traditional use of plants by the Ahoms in human health management in upper Assam, India // Journal of Medicinal Plants Studies. 2016. V.4, N2. P.48-51.
- 26. Hurrell J.A., Puentes J.P. Plant species and products of the traditional Chinese phytotherapy in the Ciudad Autynoma de Buenos Aires, Argentina // Ethnobiology and Conservation. 2017. V.6, N1. P.143
- 27. Patra S., Nithya S., Srinithya B., Meenakshi S.M. Review of medicinal plants for anti-obesity activity // Translational Biomedicine, 2015, V. 6, N3, P.1-22,
- 28. Doi K.: Mitoma C.: Nakahara T. et al. Antioxidant Houttuynia cordata extract upregulates filaggrin expression in an aryl hydrocarbon-dependent manner // Fukuoka Igaku Zasshi. 2014. V. 105. P.
- 29. Oldham P, Barnes C., Hall S. A review of UK patent activity for genetic resources and associated knowledge. 2013. http://www.ip-watch.org/weblog/wptraditional content/uploads/2014/02/UK_IPGR_Full_Report_2013.pdf
- 30. Wigraiboon S., Nakao P Nomura N.P., Whangchai N. Effect of essential oils from Houttuynia cordata Thunb supplemented diets on growth performance and immune response of Hybrid red tilapia (Oreochromis mossambicus Linn. Y Oreochromis niloticus Linn.)// International Journal of Fisheries and Aquatic Studies. 2016. V.4, N3. P.677-684.
- 31. Dubovik D.V. Rol' ehrgaziofitov v formirovanii flory Belarusi // Sb.st. 11-j
- Mezhd. nauch.-prakt.konf. «Aktual'nye problemy izucheniya i sohraneniya fito- i mikobioty», 12-14 noyabrya 2013 g., Minsk: Izd.centr BGU. 2013. S.24-27.
- 32. Ermakov A.I., Arasimovich V.V., YArosh N.P. i dr. Metody biohimicheskogo issledovaniya rastenij. L.: Kolos. 1987. 430 s.
- 33. Lakin G.F. Biometriya. M: Vysshaya shkola. 1990. 352 s.
- 34. Liu C., Zhao Y., Li X., Jia J., Chen Y., Hua Z. Antioxidant capacities and main reducing substance contents in 110 fruits and vegetables eaten in China // Food and Nutrition Sciences. 2014. V.5. P. 293-
- 35. Kruglov D.S. Individual'naya izmenchivost' ehlementnogo sostava nadzemnoj chasti Pulmonaria mollis Hornem. // Himiya rastitle/nogo syr'ya. 2010. №1. S. 131–136.36. Zhi-xi G. Content determination of microelements and heavy metal in Houttuynia cordata by dry ashing atomic absorption spectrometry //Journal of Anhui Agricultural Sciences. 2009. N16. P. 7322-7323
- 37. Corlett J.L., Clegg M.S., Keen C.L., Grivetti L.E. Mineral content of culinary and medicinal plants cultivated by Hmong refugees living in Sacramento, California // International Journal of Food Sciences and Nutrition. 2002. V.53, N2. P.117-128.